Manuscripta Mathematica

, Volume 136, Issue 1–2, pp 143–154 | Cite as

Lower semicontinuity for higher order integrals below the growth exponent

  • Flavia GiannettiEmail author


We study the lower semicontinuity of functionals of the form
$$ \mathcal{F}(u)=\int\limits_{\Omega}f(x, u(x), \mathcal{L}u(x))\,dx $$
with respect to the weak convergence in W k,p (Ω), where \({{\mathcal L}}\) is a linear differential operator of order k ≥ 1 and f is quasiconvex with respect to the operator \({{\mathcal L}}\) and satisfies 0 ≤ f(x, s, ξ) ≤ c (1 + |ξ| q ) with qp > 1.

Mathematics Subject Classification (2000)

49N60 49N99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acerbi E., Dal Maso G.: New lower semicontinuity results for polyconvex integrals. Calc. Var. PDE 2, 329–371 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Agmon S., Douglis A., Nirenberg L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Comm. pure Appl. Math. 12, 623–727 (1959)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bouchitte G., Fonseca I., Malý J.: The effective bulk energy of the relaxed energy of multiple integrals below the growth exponent. Proc. Roy. Soc. Edinb. Sect. A 128, 463–479 (1998)zbMATHGoogle Scholar
  4. 4.
    Carozza M., Passarelli di Napoli A.: Partial regularity for anisotropic functionals of higher order. ESAIM: COCV 13(4), 692–706 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Celada P., Dal Maso G.: Further remarks on the lower semicontinuity of polyconvex integrals. Ann. Inst. H. Poincaré Anal. Non Lineaire 11, 661–691 (1994)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Choksi R., Kohn R.V., Otto F.: Domain branching in uniaxial ferromagnets: a scaling law for the minimum energy. Comm. Math. Phys. 201, 61–79 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Dacorogna B.: Weak Continuity and Weak Lower Semicontinuity for Nonlinear Functionals. Lecture Notes in Mathematics, vol. 922. Springer, New York (1982)Google Scholar
  8. 8.
    Dacorogna B., Marcellini P.: Semicontinuité pour des intégrandes polyconvexes sans continuité des determinants. C.R. Acad. Sci. Paris Sér. I Math. 311(6), 393–396 (1990)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Dal Maso G., Fonseca I., Leoni G., Morini M.: Higher order quasiconvexity reduces to quasiconvexity. Arch. Ration. Mech. Anal. 171, 55–81 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    De Simone A.: Energy minimizers for large ferromagnetic bodies. Arch. Ration. Mech. Anal. 125(2), 99–143 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Esposito L., Mingione G.: Relaxation results for higher order integrals below the growth exponents. Diff. Int. Eq. 15(6), 671–696 (2002)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Fonseca I., Malý J.: Relaxation of multiple integrals below the growth exponents. Ann. Inst. H. Poincaré 14(3), 309–338 (1997)zbMATHGoogle Scholar
  13. 13.
    Fonseca I., Malý J.: From Jacobian to Hessian: distributional form and relaxation. Riv. Mat. Univ. Parma 7(4), 45–74 (2005)Google Scholar
  14. 14.
    Fonseca I., Marcellini P.: Relaxation of multiple integrals in subcritical Sobolev spaces. J. Geom. Anal. 7(1), 57–81 (1997)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Fonseca I., Múller S.: Quasiconvex integrands and lower semicontinuity in L 1. SIAM J. Math. Anal. 23(5), 1081–1098 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Fonseca I., Múller S.: A-quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal. 30(6), 1355–1390 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Fonseca I., Leoni G., Múller S.: A-quasiconvexity: weak-star convergence and the gap. Ann. I. H. Poincaré 21, 209–236 (2004)zbMATHGoogle Scholar
  18. 18.
    Fusco N., Hutchinson J.E.: A direct proof for lower semicontinuity of polyconvex functionals. Manuscr. Math. 87, 35–50 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Giannetti F., Verde A.: Variational integrals for elliptic complexes. Studia Math. 140(1), 79–98 (2000)MathSciNetGoogle Scholar
  20. 20.
    Giannetti F., Verde A.: Lower semicontinuity of a class of multiple integrals below the growth exponents. Ann. Fac. Sci. Toulouse 10(2), 299–311 (2001)MathSciNetGoogle Scholar
  21. 21.
    Kristensen J.: Lower semicontinuity of quasi-convex integrals in BV. Calc. Var. PDE 7, 249–261 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Malý J.: Weak lower semicontinuity of polyconvex integrals. Proc. Roy. Soc. Edinb. Sect. A 123, 681–691 (1993)zbMATHGoogle Scholar
  23. 23.
    Malý J.: Lower semicontinuity of quasiconvex integrals. Manuscripta Math 85(3–4), 419–428 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Marcellini P.: Approximation of quasiconvex functions and lower semicontinuity of multiple integrals. Manuscr. Math. 51(1–3), 1–28 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Marcellini P.: On the definition and lower semicontinuity of certain quasiconvex integrals. Ann. Inst. H. Poincaré 3, 391–409 (1986)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Meyers N.: Quasiconvexity and lower semicontinuity of multiple variational integrals of any order. Trans. AMS 119, 125–149 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Mingione G., Mucci D.: Integral functionals and the gap problem: sharp bounds for relaxation and energy concentration. SIAM J. Math. Anal. 36(5), 1540–1579 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Ziemer, W.P.: Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation. Graduate Texts in Mathematics, vol. 120. Springer, New York (1989)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Dipartimento di Matematica e Applicazioni “R. Caccioppoli”Università di Napoli “Federico II”NapoliItaly

Personalised recommendations