Skip to main content
Log in

Anisotropic elliptic problems with natural growth terms

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

In this paper we prove existence and regularity of solutions for nonlinear anisotropic elliptic equations of the type

$$-\sum_{i=1}^N\frac{\partial}{\partial x_i}\left[\left|\frac{\partial u}{\partial {x}_i}\right|^{p_i-2}\frac{\partial u}{\partial x_i}\right]+g(x,u,\nabla u)=f$$

in a bounded, smooth, domain Ω, in \({\mathbb{R}^N}\) , with homogeneous Dirichlet boundary conditions. The right hand side f is assumed to belong to some Lebesgue space and the function g is a nonlinear lower order term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alves C.O., El Hamidi A.: Existence of solutions for a anisotropic equation with critical exponent. Differ. Integral Equ. 21, 25–40 (2008)

    MATH  MathSciNet  Google Scholar 

  2. Antontsev S.N., Shmarev S.I.: On localization of solutions of elliptic equations with nonhomogeneous anisotropic degeneracy. Sib. Math. J. 46, 765–782 (2005)

    Article  MathSciNet  Google Scholar 

  3. Antontsev S.N., Shmarev S.I.: Elliptic equations and systems with nonstandard growth conditions: existence, uniqueness and localization properties of solutions. Nonlinear Anal. 65, 728–761 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bensoussan A., Boccardo L., Murat F.: On a nonlinear partial differential equation having natural growth terms and unbounded solution. Ann. Inst. H. Poincaré Anal. Non Linéaire 5, 347–364 (1988)

    MATH  MathSciNet  Google Scholar 

  5. Boccardo, L.: Hardy Potentials and Quasi-Linear Elliptic Problems Having Natural Growth Terms. Elliptic and Parabolic Problems. Progress in Nonlinear Differential Equations and Their Applications, vol. 63, pp. 67–82 . Birkhäuser, Basel (2005)

  6. Boccardo L., Gallouët T.: Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87, 149–169 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. Boccardo L., Gallouët T.: Strongly nonlinear elliptic equations having natural growth terms and L 1 data. Nonlinear Anal. T.M.A. 19, 573–579 (1992)

    Article  MATH  Google Scholar 

  8. Boccardo L., Gallouët T., Marcellini P.: Anisotropic equations in L 1. Differ. Integral Equ. 9, 209–212 (1996)

    MATH  Google Scholar 

  9. Boccardo L., Gallouët T., Orsina L.: Existence and nonexistence of solutions for some nonlinear elliptic equations. J. Anal. Math. 73, 203–223 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Boccardo L., Marcellini P., Sbordone C.: L -regularity for variational problems with sharp nonstandard growth conditions. Boll. Un. Mat. Ital. A 4, 219–225 (1990)

    MATH  MathSciNet  Google Scholar 

  11. Boccardo L., Murat F., Puel J.P.: Existence de solutions non bornées pour certains équations quasi-linéaires. Port. Math. 41, 507–534 (1982)

    MATH  MathSciNet  Google Scholar 

  12. Boccardo, L., Murat, F., Puel, J.P.: Existence de solutions faibles des équations elliptiques quasi-linéaires à croissance quadratique. Nonlinear P.D.E. and their applications, Collège de France Seminar, vol. IV (Paris, 1981/1982). Research Notes in Mathematics, vol. 84, pp. 19–73. Pitman, London (1983)

  13. Boccardo L., Murat F., Puel J.P.: L estimate for some nonlinear elliptic partial differential equations and application to an existence result. SIAM J. Math. Anal. 23, 326–333 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Brezis, H.: Nonlinear Elliptic Equations Involving Measures. In: Contributions to Nonlinear Partial Differential Equations (Madrid, 1981). Research Notes in Mathematics, vol. 89, pp. 82–89. Pitman, Boston, MA (1983)

  15. Brezis H., Nirenberg L.: Removable singularities for nonlinear elliptic equations. Topol. Methods Nonlinear Anal. 9, 201–219 (1997)

    MATH  MathSciNet  Google Scholar 

  16. Brezis H., Veron L.: Removable singularities for some nonlinear elliptic equations. Arch. Rational Mech. Anal. 75, 1–6 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dall’Aglio A., Giachetti D., Puel J.P.: Nonlinear elliptic equations with natural growth in general domains. Ann. Mat. Pura Appl. 181, 407–426 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dal Maso G., Murat F., Orsina L., Prignet A.: Definition and existence of renormalized solutions of elliptic equations with general measure data. C.R. Acad. Sci. Paris Sér. I Math. 325, 481–486 (1997)

    MATH  MathSciNet  Google Scholar 

  19. Di Castro, A.: Elliptic problems for some anisotropic operators. Ph.D. Thesis, University of Rome “Sapienza”, a. y. (2008/2009)

  20. Di Castro A.: Existence and regularity results for anisotropic elliptic problems. Adv. Nonlinear Stud. 9, 367–393 (2009)

    MATH  MathSciNet  Google Scholar 

  21. Di Castro A.: Corrigendum to existence and regularity results for anisotropic elliptic problems. Adv. Nonlinear Stud. 9, 595 (2009)

    MATH  MathSciNet  Google Scholar 

  22. Di Castro A., Montefusco E.: Nonlinear eigenvalues for anisotropic quasilinear degenerate elliptic equations. Nonlinear Anal. T.M.A. 70, 4093–4105 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. El Hamidi A., Rakotoson J.M.: On a perturbed anisotropic equation with a critical exponent. Ric. Mat. 55, 55–69 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. El Hamidi A., Vétois J.: Sharp Sobolev asymptotics for critical anisotropic equations. Arch. Ration. Mech. Anal. 192, 1–36 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Esposito L., Leonetti F., Mingione G.: Sharp regularity for functionals with (p, q) growth. J. Differ. Equ. 204, 5–55 (2004)

    MATH  MathSciNet  Google Scholar 

  26. Fragalà I., Gazzola F., Kawohl B.: Existence and nonexistence results for anisotropic quasilinear elliptic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 21, 715–734 (2004)

    Article  MATH  Google Scholar 

  27. Fusco N., Sbordone C.: Local boundedness of minimizers in a limit case. Manuscr. Math. 69, 19–25 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  28. Fusco N., Sbordone C.: Some remarks on the regularity of minima of anisotropic integrals. Commun. Partial Differ. Equ. 18, 153–167 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kruzhkov S.N., Kolodii I.M.: On the theory of embedding of anisotropic Sobolev spaces. Russ. Math. Surv. 38, 188–189 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  30. Leray J., Lions J.L.: Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder. Bull. Soc. Math. Fr. 93, 97–107 (1965)

    MATH  MathSciNet  Google Scholar 

  31. Porzio M.M.: L -regularity for degenerate and singular anisotropic parabolic equations. Boll. Un. Mat. Ital. A 11, 697–707 (1997)

    MATH  MathSciNet  Google Scholar 

  32. Skrypnik I.I.: Removability of an isolated singularity for anisotropic elliptic equation with absorption. Sb. Math. 199, 1033–1050 (2008)

    Article  MathSciNet  Google Scholar 

  33. Stroffolini B.: Global boundedness of solutions of anisotropic variational problems. Boll. Un. Mat. Ital. 5A, 345–352 (1991)

    MathSciNet  Google Scholar 

  34. Troisi M.: Teoremi di inclusione per spazi di Sobolev non isotropi. Ric. Mat. 18, 3–24 (1969)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnese Di Castro.

Additional information

This research supported by CMUC/FCT.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Castro, A. Anisotropic elliptic problems with natural growth terms. manuscripta math. 135, 521–543 (2011). https://doi.org/10.1007/s00229-011-0431-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-011-0431-3

Mathematics Subject Classification (2000)

Navigation