Manuscripta Mathematica

, Volume 134, Issue 3–4, pp 359–375 | Cite as

A variant of Néron models over curves

  • Morihiko Saito
  • Christian SchnellEmail author


We study a variant of the Néron models over curves which has recently been found by the second named author in a more general situation using the theory of Hodge modules. We show that its identity component is a certain open subset of an iterated blow-up along smooth centers of the Zucker extension of the family of intermediate Jacobians and that the total space is a complex Lie group over the base curve and is Hausdorff as a topological space. In the unipotent monodromy case, the image of the map to the Clemens extension coincides with the Néron model defined by Green, Griffiths and Kerr. In the case of families of Abelian varieties over curves, it coincides with the Clemens extension, and hence with the classical Néron model in the algebraic case (even in the non-unipotent monodromy case).

Mathematics Subject Classification (2000)

14D07 32G20 14K30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beilinson, A., Bernstein, J., Deligne, P.: Faisceaux pervers, Astérisque, vol. 100, Soc. Math. France, Paris (1982)Google Scholar
  2. 2.
    Brosnan, P., Pearlstein, G., Saito, M.: A generalization of the Néron models of Green, Griffiths and Kerr, preprint (arXiv:0809.5185)Google Scholar
  3. 3.
    Clemens H.: The Néron model for families of intermediate Jacobians acquiring “algebraic” singularities. Publ. Math. IHES 58, 5–18 (1983)MathSciNetGoogle Scholar
  4. 4.
    Deligne, P.: Equations différentiellesà points singuliers réguliers, Lect. Notes in Math. vol. 163, Springer, Berlin, 1970Google Scholar
  5. 5.
    Deligne P.: Théorie de Hodge II. Publ. Math. IHES 40, 5–58 (1971)zbMATHMathSciNetGoogle Scholar
  6. 6.
    El Zein, F., Zucker, S.: Extendability of normal functions associated to algebraic cycles. In topics in transcendental algebraic geometry. Ann. Math. Stud. vol. 106, pp. 269–288. Princeton University Press, Princeton, NJ (1984)Google Scholar
  7. 7.
    Green, M., Griffiths, P., Kerr, M.: Neron models and boundary components for degenerations of Hodge structures of mirror quintic type. In: Alexeev, V. (ed.) Curves and Abelian Varieties. Contemp. Math. vol. 465, pp. 71–145, AMS, USA (2007)Google Scholar
  8. 8.
    Green M., Griffiths P., Kerr M.: Néron models and limits of Abel-Jacobi mappings. Compositio Math. 146, 288–366 (2010)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Okonek, C., Schneider, M., Spindler, H.: Vector bundles on complex projective spaces. Progress in Mathematics, Vol. 3, Birkhäuser Boston, MA (1980)Google Scholar
  10. 10.
    Saito M.: Modules de Hodge polarisables. Publ. RIMS, Kyoto Univ. 24, 849–995 (1988)zbMATHCrossRefGoogle Scholar
  11. 11.
    Saito M.: Admissible normal functions. J. Algebraic Geom. 5, 235–276 (1996)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Saito, M.: Hausdorff property of the Néron models of Green, Griffiths and Kerr, preprint (arXiv:0803.2771)Google Scholar
  13. 13.
    Schnell, C.: Complex analytic Néron models for arbitrary families of intermediate Jacobians, preprint (arXiv:0910.0662)Google Scholar
  14. 14.
    Young, A.: Complex analytic Néron models for degenerating Abelian varieties over higher dimensional parameter spaces, Ph. D. Thesis, Princeton University, NJ, Sept 2008Google Scholar
  15. 15.
    Zucker S.: Generalized intermediate Jacobians and the theorem on normal functions. Inv. Math. 33, 185–222 (1976)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.RIMS, Kyoto UniversityKyotoJapan
  2. 2.Department of Mathematics, Statistics and Computer ScienceUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations