Skip to main content
Log in

Prolongations of valuations to finite extensions

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Let \({K=\mathbb{Q}(\theta)}\) be an algebraic number field with θ in the ring A K of algebraic integers of K and f(x) be the minimal polynomial of θ over the field \({\mathbb{Q}}\) of rational numbers. For a rational prime p, let \({\bar{f}(x)\,=\,\bar{g}_{1}(x)^{e_{1}}....\bar{g}_{r}(x)^{e_{r}}}\) be the factorization of the polynomial \({\bar{f}(x)}\) obtained by reducing coefficients of f(x) modulo p into a product of powers of distinct irreducible polynomials over \({\mathbb{Z}/p\mathbb{Z}}\) with g i (x) monic. Dedekind proved that if p does not divide [\({A_{K}:\mathbb{Z}}\) [θ]], then \({pA_{K}=\wp_{1}^{e_{1}}\ldots\wp_{r}^{e_{r}}}\), where \({\wp_{1},\ldots,\wp_{r}}\) are distinct prime ideals of A K , \({\wp_{i}=pA_{K}+g_{i}(\theta)A_{K}}\) having residual degree equal to the degree of \({\bar{g}_{i}(x)}\). He also proved that p does not divide [\({A_{K}:\mathbb{Z}}\)[θ]] if and only if for each i, either e i  = 1 or \({\bar{g}_{i}(x)}\) does not divide \({\bar{M}(x)}\) where \({M(x)=\frac{1}{p}(f(x)-g_{1}(x)^{e_{1}}....g_{r}(x)^{e_{r}})}\). Our aim is to give a weaker condition than the one given by Dedekind which ensures that if the polynomial \({\bar{f}(x)}\) factors as above over \({\mathbb{Z}/p\mathbb{Z}}\), then there are exactly r prime ideals of A K lying over p, with respective residual degrees \({\deg \bar {g}_{1}(x),...,\deg \bar {g}_{r}(x)}\) and ramification indices e 1, ..., e r . In this paper, the above problem has been dealt with in a more general situation when the base field is a valued field (K, v) of arbitrary rank and K(θ) is any finite extension of K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandru V., Popescu N., Zaharescu A.: A theorem of characterization of residual transcendental extension of a valuation. J. Math. Kyoto Univ. 28, 579–592 (1988)

    MATH  MathSciNet  Google Scholar 

  2. Cohen H.: A Course in Computational Algebraic Number Theory. Springer-Verlag, New York (1993)

    MATH  Google Scholar 

  3. Cohen S.D., Movahhedi A., Salinier A.: Factorization over local fields and the irreducibility of generalized difference polynomials. Mathematika 47, 173–196 (2000)

    MATH  MathSciNet  Google Scholar 

  4. Dedekind R.: Über den zusammenhang zwischen der theorie der ideale und der theorie der höheren kongruenzen. Göttingen Abhandlungen 23, 1–23 (1878)

    Google Scholar 

  5. Endler O.: Valuation Theory. Springer-Verlag, New York (1972)

    MATH  Google Scholar 

  6. Engler A.J., Prestel A.: Valued Fields. Springer-Verlag, New York (2005)

    MATH  Google Scholar 

  7. Ershov, Y.L.: A Dedekind Criterion for arbitrary valuation rings. Dokl. Math. 74(2), 650–652 (2006) (translation in Pleiades Publishing Inc.)

    Google Scholar 

  8. Khanduja S.K.: On valuations of K(x)’. Proc. Edinburgh Math. Soc. 35, 419–426 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Khanduja S.K., Popescu N., Roggenkamp K.W.: On minimal pairs and residually transcendental extensions of valuations. Mathematika 49, 93–106 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Khanduja S.K., Kumar M.: A Generalization of Dedekind Criterion. Commun. Algebra 35(5), 1479–1486 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Khanduja S.K., Kumar M.: On a theorem of Dedekind. Int. J. Num. Theory 4(6), 1019–1025 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudesh K. Khanduja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khanduja, S.K., Kumar, M. Prolongations of valuations to finite extensions. manuscripta math. 131, 323–334 (2010). https://doi.org/10.1007/s00229-009-0320-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-009-0320-1

Mathematics Subject Classification (2000)

Navigation