Advertisement

manuscripta mathematica

, Volume 130, Issue 1, pp 1–19 | Cite as

Hodge polynomials and birational types of moduli spaces of coherent systems on elliptic curves

  • H. LangeEmail author
  • P. E. Newstead
Article

Abstract

In this paper we consider moduli spaces of coherent systems on an elliptic curve. We compute their Hodge polynomials and determine their birational types in some cases. Moreover we prove that certain moduli spaces of coherent systems are isomorphic. This last result uses the Fourier-Mukai transform of coherent systems introduced by Hernández Ruipérez and Tejero Prieto.

Mathematics Subject Classification (2000)

Primary 14H60 Secondary 14F05 32L10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atiyah M.F.: Vector bundles over an elliptic curve. Proc. Lond. Math. Soc. (3) 7, 414–452 (1957)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bradlow S.B., García-Prada O., Muñoz V., Newstead P.E.: Coherent systems and Brill-Noether theory. Int. J. Math. 14(7), 683–733 (2003)zbMATHCrossRefGoogle Scholar
  3. 3.
    Deligne, P.: Theorie de Hodge I. Actes du Congrès International des Mathématiciens 1, 425–430 (Nice, 1970)Google Scholar
  4. 4.
    Deligne P.: Theorie de Hodge II. Inst. Hautes Études Sci. Publ. Math. 40, 5–57 (1971)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Deligne P.: Theorie de Hodge III. Inst. Hautes Études Sci. Publ. Math. 44, 5–77 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hernández Ruipérez D., Tejero Prieto C.: Fourier-Mukai transforms for coherent systems on elliptic curves. J. Lond. Math. Soc. (2) 77(1), 15–32 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Lange H., Newstead P.E.: Coherent systems on elliptic curves. Int. J. Math. 16(7), 787–805 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Muñoz, V., Ortega, D., Vázquez-Gallo, M.-J.: Hodge polynomials of the moduli spaces of triples of rank (2,2). Q. J. Math. Advance Access published on June 5, 2008, doi: 10.1093/qmath/han007
  9. 9.
    Tu L.: Semistable bundles over an elliptic curve. Adv. Math. 98(1), 1–26 (1993)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität Erlangen-NürnbergErlangenGermany
  2. 2.Department of Mathematical SciencesUniversity of LiverpoolLiverpoolUK

Personalised recommendations