Skip to main content
Log in

On the equi-normalizable deformations of singularities of complex plane curves

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We study a specific class of deformations of curve singularities: the case when the singular point splits to several ones, such that the total δ invariant is preserved. These are also known as equi-normalizable or equi-generic deformations. We restrict primarily to the deformations of singularities with smooth branches. A natural invariant of the singular type is introduced: the dual graph. It imposes severe restrictions on the possible collisions/deformations. And allows to prove some bounds on the variation of classical invariants in equi-normalizable families. We consider in details deformations of ordinary multiple point, the deformations of a singularity into the collections of ordinary multiple points and deformations of the type x p + y pk into the collections of A k ’s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alberich-Carramiñana M., Roé J.: Enriques diagrams and adjacency of planar curve singularities. Can. J. Math. 57(1), 3–16 (2005)

    MATH  Google Scholar 

  2. Arnol’d, V.I., Goryunov, V.V., Lyashko, O.V., Vasil’ev, V.A.: Singularity theory. I. Reprint of the original English edition from the series Encyclopaedia of Mathematical Sciences [Dynamical systems. VI, Encyclopaedia Math. Sci., 6, Springer, Berlin, 1993], pp. iv+245. Springer, Berlin (1998). ISBN: 3-540-63711-7

  3. Albanese G.: Sulle condizioni perchè una curva algebraica riducible si possa considerare come limite di una curva irreducibile. Rend. Circ. Mat. Palermo (2) 52, 105–150 (1928)

    Article  Google Scholar 

  4. Brieskorn E.: Die Hierarchie der 1-modularen Singularitäten. Manuscr. Math. 27(2), 183–219 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brieskorn, E.: The unfolding of exceptional singularities. Leopoldina Symposium: Singularities (Thüringen, 1978). Nova Acta Leopoldina (N.F.) 52(240), 65–93 (1981)

  6. Brieskorn, E.: Die Milnorgitter der exzeptionellen unimodularen Singularitäten. [The Milnor lattices of exceptional unimodal singularities]. Bonn Mathematical Publications, vol. 150, pp. iv+225. Universität Bonn, Mathematisches Institut, Bonn (1983)

  7. Buchweitz R.-O., Greuel G.-M.: The Milnor number and deformations of complex curve singularities. Invent. Math. 58(3), 241–281 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  8. Damon J., Galligo A.: Universal topological stratification for the Pham example. Bull. Soc. Math. Fr. 121(2), 153–181 (1993)

    MATH  MathSciNet  Google Scholar 

  9. Diaz S., Harris J.: Ideals associated to deformations of singular plane curves. Trans. Am. Math. Soc. 309(2), 433–468 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  10. Greuel G.-M., Lossen C., Shustin E.: Introduction to Singularities and Deformations. Series: Springer Monographs in Mathematics. Springer, Berlin (2006) ISBN:3-540-28380-3

    Google Scholar 

  11. Greuel G.-M., Lossen C.: Equianalytic and equisingular families of curves on surfaces. Manuscr. Math. 91(3), 323–342 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hirzebruch, F.: Arrangements of lines and algebraic surfaces. Arith. Geom. II, 113–140 (1983) (Progr. Math., vol. 36, Birkhäuser, Boston)

  13. Jaworski P.: Decompositions of parabolic singularities. Bull. Sci. Math. (2) 112(2), 143–176 (1988)

    MATH  MathSciNet  Google Scholar 

  14. Jaworski P.: Decompositions of hypersurface singularities of type J k,0. Ann. Polon. Math. 59(2), 117–131 (1994)

    MATH  MathSciNet  Google Scholar 

  15. de Jong T., van Straten D.: Deformation theory of sandwiched singularities. Duke Math. J. 95(3), 451–522 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kerner, D.: On the collisions of singular points of complex algebraic plane curves. arXiv:0708.1228

  17. Kerner, D.: On the δ = const collisions of singularities of complex plane curves Oberwolfach preprint 2008-15. http://www.mfo.de/publications/owp/

  18. Kulikov, V.S.: Mixed Hodge structures and singularities. Cambridge Tracts in Mathematics, vol. 132, pp. xxii+186. Cambridge University Press, Cambridge (1998)

  19. Looijenga E.: Rational surfaces with an anti-canonical cycle. Ann. Math. 114, 267–322 (1981)

    Article  MathSciNet  Google Scholar 

  20. Lyashko O.V.: Geometry of bifurcation diagrams. Curr. Probl. Math. 22, 94–129 (1983) (Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow)

    MathSciNet  Google Scholar 

  21. Nobile A.: On specializations of curves. I. Trans. Am. Math. Soc. 282(2), 739–748 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pham, F.: Remarque sur l’équisingularité universelle. Prépublication Université de Nice Faculté des Sciences (1970)

  23. du Plessis, A.A., Wall, C.T.C.: Topology of unfoldings of singularities in the E, Z and Q series. Real and complex singularities. Contemporary Mathematics, vol. 354, pp. 227–258. American Mathematical Society, Providence (2004)

  24. du Plessis, A., Wall, T.: The geometry of topological stability. London Mathematical Society Monographs. New Series, vol. 9, pp. viii+572 (1995)

  25. Shustin E.: Versal deformations in the space of plane curves of fixed degree. Funct. Anal. Appl. 21, 82–84 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  26. Steenbrink, J.M.: Mixed Hodge structure on the vanishing cohomology. Real and complex singularities. In: Proceedings of the Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976, pp. 525–563. Sijthoff and Noordhoff, Alphen aan den Rijn (1977)

  27. Steenbrink J.: Intersection form for quasi-homogeneous singularities. Compos. Math. 34(2), 211–223 (1977)

    MATH  MathSciNet  Google Scholar 

  28. Steenbrink J.H.M.: Semicontinuity of the singularity spectrum. Invent. Math. 79(3), 557–565 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  29. Stevens, J.: Some adjacencies to cusp singularities. Real and complex singularities. Contemporary Mathematics, vol. 354, pp. 291–300. American Mathematical Society, Providence (2004)

  30. Urabe, T.: The principle describing possible combinations of singularities in deformations of a fixed singularity. In: Proceedings of the 1994 Workshop on Topology and Geometry (Zhanjiang). Chinese Quart. J. Math. 10(4), 98–104 (1995)

  31. Urabe, T.: Dynkin graphs and quadrilateral singularities. Lecture Notes in Mathematics, vol. 1548, pp vi+233. Springer, Berlin (1993)

  32. Teissier, B.: The hunting of invariants in the geometry of discriminants. Real and complex singularities. In: Proceedings of the Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976, pp. 565–678. Sijthoff and Noordhoff, Alphen aan den Rijn (1977)

  33. Varchenko A.N.: Semicontinuity of the spectrum and an upper bound for the number of singular points of the projective hypersurface. Dokl. Akad. Nauk SSSR 270(6), 1294–1297 (1983)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Kerner.

Additional information

The research was constantly supported by the Skirball postdoctoral fellowship of the Center of Advanced Studies in Mathematics (Mathematics Department of Ben Gurion University, Israel). Part of the work was done in Mathematische Forschungsinsitute Oberwolfach, during the author’s stay as an OWL-fellow. Some results were published in the preprint [17].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerner, D. On the equi-normalizable deformations of singularities of complex plane curves. manuscripta math. 129, 499–521 (2009). https://doi.org/10.1007/s00229-009-0269-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-009-0269-0

Mathematics Subject Classification (2000)

Navigation