manuscripta mathematica

, Volume 129, Issue 3, pp 381–399 | Cite as

Elliptic curve configurations on Fano surfaces

  • Xavier RoulleauEmail author
Open Access


The elliptic curves on a surface of general type constitute an obstruction for the cotangent sheaf to be ample. In this paper, we give the classification of the configurations of the elliptic curves on the Fano surface of a smooth cubic threefold. That means that we give the number of such curves, their intersections and a plane model. This classification is linked to the classification of the automorphism groups of theses surfaces.

Mathematics Subject Classification (2000)

Primary 14J29 Secondary 14J45 14J50 14J70 32G20 


  1. 1.
    Barth W., Hulek K., Peters C., Van De Ven A.: Compact complex surfaces, volume 4 of Ergebnisse der Mathematik und ihrer Grenzgebiete, 2nd edn. Springer-Verlag, Berlin (2004)Google Scholar
  2. 2.
    Beauville, A.: Les singularités du diviseur Θ de la jacobienne intermédiaire de la cubique dans \({\mathbb{P}^4}\) Algebraic threefolds (Proc. Varenna 1981), LNM 947, pp. 190–208. Springer, Berlin (1982)Google Scholar
  3. 3.
    Birkenhake, C., Lange, H.: Complex Abelian varieties, volume 302 of Grundlehren der Mathematischen Wissenschaften, 2nd edn. Springer, Berlin (2004)Google Scholar
  4. 4.
    Clemens H., Griffiths P.: The intermediate Jacobian of the cubic threefold. Ann. Math. 95, 281–356 (1972)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Cohen A.: Finite complex reflection groups. Ann. Scient. Ec. Norm. Sup. 4ème Sèrie 9, 379–436 (1976)zbMATHGoogle Scholar
  6. 6.
    Debarre, O.: Higher-dimensional Algebraic Geometry. Universitext. Springer, New York (2001)zbMATHGoogle Scholar
  7. 7.
    Dolgachev I.: Reflection groups in algebraic geometry. Bull. Am. Math. Soc. (N.S.) 45(1), 1–60 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gieseker D.: On a theorem of Bogomolov on Chern classes of stables bundle. Am. J. Math. 101, 77–85 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Humphreys J.: Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, vol. 29. Cambridge University Press, Cambridge (1990)Google Scholar
  10. 10.
    Roulleau, X.: L’application cotangente des surfaces de type général. preprint Arxiv: 0902.4069, to be published in Geom. DedicataGoogle Scholar
  11. 11.
    Shephard G.C., Todd J.A.: Finite unitary reflection groups. Can. J. Math. 5, 364–383 (1953)zbMATHGoogle Scholar
  12. 12.
    Tyurin A.N.: On the Fano surface of a nonsingular cubic in \({\mathbb{P}^{4}}\). Math. Ussr Izv. 4, 1207–1214 (1970)CrossRefGoogle Scholar
  13. 13.
    Tyurin A.N.: The geometry of the Fano surface of a nonsingular cubic \({F\subset \mathbb{P}^4}\) and Torelli Theorems for Fano surfaces and cubics. Math. Ussr Izv. 5, 517–546 (1971)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Graduate School of Mathematical SciencesThe University of TokyoMeguro, TokyoJapan

Personalised recommendations