Skip to main content
Log in

Quantitative linear independence of an infinite product and its derivatives

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We establish measures for the rational linear independence of 1 and the values of the product \({\prod_{n>0} \left(1 + z/(q^n + q^{-n})\right)}\) and its derivatives at finitely many rational points, q ≠ 0,±1 being a fixed integer. This is a quantitative improvement upon Bézivin’s very recent result in this journal. In contrast to his procedure, we use the method of Padé approximations of the second kind to get the above-mentioned improvement, some generalizations, and several irrationality measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amou M., Matala-aho T., Väänänen K.: On Siegel-Shidlovskii’s theory for q-difference equations. Acta Arith. 127, 309–335 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bézivin J.-P.: Indépendance linéaire des valeurs des solutions transcendantes de certaines equations fonctionnelles. Manuscripta Math. 61, 103–129 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bézivin J.-P.: Irrationalité de certaines sommes de séries. Manuscripta Math. 126, 41–47 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bundschuh P., Shiokawa I.: A measure for the linear independence of certain numbers. Res. Math. 7, 130–144 (1984)

    MATH  MathSciNet  Google Scholar 

  5. Bundschuh P., Väänänen K.: On the simultaneous diophantine approximation of new products. Analysis 20, 387–393 (2000)

    MATH  Google Scholar 

  6. Bundschuh P., Zudilin W.: Irrationality measures for certain q-mathematical constants. Math. Scand. 101, 104–122 (2007)

    MATH  MathSciNet  Google Scholar 

  7. Duverney D.: Some arithmetical consequences of Jacobi’s triple product identity. Math. Proc. Cambridge Philos. Soc. 122, 393–399 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Katsurada M.: Linear independence measures for the values of Heine series. Math. Ann. 284, 449–460 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Koivula L., Sankilampi O., Väänänen K.: A linear independence measure for the values of Tschakaloff function and an application. JP J. Algebra Number Theory Appl. 6, 85–101 (2006)

    MATH  MathSciNet  Google Scholar 

  10. Nesterenko, Yu.V.: Modular functions and transcendence questions. Mat. Sb. 187, 65–96 (1996); Engl. transl.: Sb. Math. 187, 1319–1348 (1996)

    Google Scholar 

  11. Rochev, I.: On linear independence of values of certain q-series (Russ.). Submitted

  12. Smet, C., Van Assche, W.: Irrationality proof of a q-extension of ζ(2) using little q-Jacobi polynomials. Submitted

  13. Stihl T.: Arithmetische Eigenschaften spezieller Heinescher Reihen. Math. Ann. 268, 21–41 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  14. Väänänen K., Zudilin W.: Linear independence of values of Tschakaloff functions with different parameters. J. Number Theory 128, 2549–2558 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Bundschuh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bundschuh, P., Väänänen, K. Quantitative linear independence of an infinite product and its derivatives. manuscripta math. 129, 423–436 (2009). https://doi.org/10.1007/s00229-009-0262-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-009-0262-7

Mathematics Subject Classification (2000)

Navigation