Skip to main content
Log in

Stability of quadratic modules

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

A finitely generated quadratic module or preordering in the real polynomial ring is called stable, if it admits a certain degree bound on the sums of squares in the representation of polynomials. Stability, first defined explicitly in Powers and Scheiderer (Adv Geom 1, 71–88, 2001), is a very useful property. It often implies that the quadratic module is closed; furthermore, it helps settling the Moment Problem, solves the Membership Problem for quadratic modules and allows applications of methods from optimization to represent nonnegative polynomials. We provide sufficient conditions for finitely generated quadratic modules in real polynomial rings of several variables to be stable. These conditions can be checked easily. For a certain class of semi-algebraic sets, we obtain that the nonexistence of bounded polynomials implies stability of every corresponding quadratic module. As stability often implies the non-solvability of the Moment Problem, this complements the result from Schmüdgen (J Reine Angew Math 558, 225–234, 2003), which uses bounded polynomials to check the solvability of the Moment Problem by dimensional induction. We also use stability to generalize a result on the Invariant Moment Problem from Cimpric et al. (Trans Am Math Soc, to appear).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams E.W.: Elements of a theory of inexact measurements. Phil. Sci. 32, 205–228 (1965)

    Article  Google Scholar 

  2. Augustin, D.: The Membership Problem for Quadratic Modules with Focus on the One Dimensional Case. Doctoral Thesis, University of Regensburg (2008)

  3. Cimpric J., Kuhlmann S., Scheiderer C.: Sums of squares and invariant moment problems in equivariant situations. Trans. Am. Math. Soc. 361, 735–765 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Kuhlmann S., Marshall M.: Positivity, sums of squares and the multi-dimensional moment problem. Trans. Am. Math. Soc. 354, 4285–4301 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kuhlmann S., Marshall M., Schwartz N.: Positivity, sums of squares and the multi-dimensional moment problem II. Adv. Geom. 5, 583–606 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Lasserre J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Marshall, M.: Positive polynomials and sums of squares. AMS Math. Surveys and Monographs 146, Providence (2008)

  8. Netzer T.: An elementary proof of Schmüdgens theorem on the moment problem of closed semialgebrac sets. Proc. Am. Math. Soc. 136, 529–537 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Plaumann, D.: Stabilität von Quadratsummen auf Rellen Algebraischen Varietäten. Diplomarbeit, Universität Duisburg (2004)

  10. Plaumann, D.: Bounded Polynomials, Sums of Squares and the Moment Problem. Doctoral Thesis, University of Konstanz (2008)

  11. Powers V., Scheiderer C.: The moment problem for non-compact semialgebraic sets. Adv. Geom. 1, 71–88 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Prestel A., Delzell C.N.: Positive Polynomials. Springer, Berlin (2001)

    MATH  Google Scholar 

  13. Scheiderer C.: Non-existence of degree bounds for weighted sums of squares representations. J. Complex. 21, 823–844 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Scheiderer C.: Sums of squares on real algebraic curves. Math. Z. 245, 725–760 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Schmüdgen K.: Unbounded Operator Algebras and Representation Theory. Birkhäuser, Basel (1990)

    Google Scholar 

  16. Schmüdgen K.: The K-moment problem for compact semi-algebraic sets. Math. Ann. 289, 203–206 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  17. Schmüdgen K.: On the moment problem of closed semialgebraic sets. J. Reine Angew. Math. 558, 225–234 (2003)

    MATH  MathSciNet  Google Scholar 

  18. Schweighofer M.: On the complexity of Schmüdgen’s positivstellensatz. J. Complex. 20(4), 529–543 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Schweighofer M.: Optimization of polynomials on compact semialgebraic sets. SIAM J. Optim. 15, 805–825 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Vandenberghe L., Boyd S.: Semidefinite programming. SIAM Rev. 38, 49–95 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Netzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Netzer, T. Stability of quadratic modules. manuscripta math. 129, 251–271 (2009). https://doi.org/10.1007/s00229-009-0258-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-009-0258-3

Mathematics Subject Classification (2000)

Navigation