manuscripta mathematica

, Volume 129, Issue 3, pp 293–335 | Cite as

Tropical descendant Gromov–Witten invariants

  • Hannah MarkwigEmail author
  • Johannes Rau
Open Access


We define tropical Psi-classes on\({\mathcal{M}_{0,n}(\mathbb{R}^2, d)}\) and consider intersection products of Psi-classes and pull-backs of evaluations on this space. We show a certain WDVV equation which is sufficient to prove that tropical numbers of curves satisfying certain Psi- and evaluation conditions are equal to the corresponding classical numbers. We present an algorithm that generalizes Mikhalkin’s lattice path algorithm and counts rational plane tropical curves satisfying certain Psi- and evaluation conditions.

Mathematics Subject Classification (2000)

Primary 14N35 52B20 


Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. 1.
    Allermann, L., Rau, J.: First steps in tropical intersection theory. Preprint. math. AG/0709.3705Google Scholar
  2. 2.
    Fulton, W., Pandharipande, R.: Notes on stable maps and quantum cohomology. In: Algebraic Geometry, Proceedings of the Summer Research Institute Santa Cruz 1995. Proc. Symp. Pure Math., vol. 62, part 2, pp. 45–96 (1997)Google Scholar
  3. 3.
    Gross, M.: Mirror Symmetry for \({\mathbb{P}^2}\) and Tropical Geometry. Preprint. math.AG/0903. 1378Google Scholar
  4. 4.
    Gathmann, A., Kerber, M., Markwig, H.: Tropical fans and the moduli spaces of tropical curves. Compositio Mathematica (to appear). math.AG/0708.2268Google Scholar
  5. 5.
    Gathmann A., Markwig H.: Kontsevich’s formula and the WDVV equations in tropical geometry. Adv. Math. 217, 537–560 (2008) math.AG/0509628zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kock, J.: Notes on Psi classes.
  7. 7.
    Kerber, M., Markwig, H.: Intersecting Psi-classes on tropical M 0,n. Preprint. math.AG/0709.3953Google Scholar
  8. 8.
    Mann, B.: An equivalent condition for the reducibility of tropical curves. Preprint, University of Michigan, Ann Arbor (in preparation)Google Scholar
  9. 9.
    Markwig, H.: The enumeration of plane tropical curves. PhD thesis, TU Kaiserslautern (2006)Google Scholar
  10. 10.
    Mikhalkin G.: Enumerative tropical geometry in \({\mathbb{R}^2}\). J. Am. Math. Soc. 18, 313–377 (2005) math.AG/0312530zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Mikhalkin, G.: Tropical geometry and its applications. In: Sanz-Sole, M., et al. (eds.) Invited Lectures, vol. II. Proceedings of the ICM Madrid, pp. 827–852 (2006). math.AG/0601041Google Scholar
  12. 12.
    Mikhalkin, G.: Moduli spaces of rational tropical curves. Preprint. math.AG/0704.0839 (2007)Google Scholar
  13. 13.
    Richter-Gebert, J., Sturmfels, B., Theobald, T.: First steps in tropical geometry. Idempotent Mathematics and Mathematical Physics, Proceedings Vienna (2003). math/0306366Google Scholar
  14. 14.
    Speyer, D., Sturmfels, B.: Tropical mathematics. Preprint. math.CO/0408099 (2004)Google Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  1. 1.Courant Research Center “Higher Order Structures in Mathematics”Georg-August-Universität GöttingenGöttingenGermany
  2. 2.Fachbereich MathematikTechnische Universität KaiserslauternKaiserslauternGermany

Personalised recommendations