Skip to main content
Log in

Ranks of abelian varieties over infinite extensions of the rationals

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Let S be an infinite set of rational primes and, for some pS, let \({\mathbb{Q}_S^{(p)}}\) be the compositum of all extensions unramified outside S of the form \({\mathbb{Q}(\mu_p,\sqrt[p]{d})}\), for \({d \in \mathbb{Q}^\times}\). If \({(\sigma) = (\sigma_{1},\ldots,\sigma_{n}) \in {\rm Gal} {(\overline{\mathbb{Q}}/\mathbb{Q})}^n}\), let \({(\mathbb{Q}_S^{(p)})^{(\sigma)}}\) be the intersection of the fixed fields by \({{\langle\sigma_{i}\rangle}}\), for i = 1, . . , n. We provide a wide family of elliptic curves \({E/\mathbb{Q}}\) such that the rank of \({E((\mathbb{Q}_S^{(p)})^{(\sigma)})}\) is infinite for all n ≥ 0 and all \({(\sigma) \in {\rm Gal}(\overline{\mathbb{Q}}/\mathbb{Q})^n}\), subject to the parity conjecture. Similarly, let \({(A/\mathbb{Q},\phi)}\) be a polarized abelian variety, let K be a quadratic number field fixed by \({(\sigma) \in {\rm Gal}(\overline{\mathbb{Q}}/\mathbb{Q})^n}\), let S be an infinite set of primes of \({\mathbb{Q}}\) and let \(K^{p-{\rm dihe}}_S\) be the maximal abelian p-elementary extension of K unramified outside primes of K lying over S and dihedral over \({\mathbb{Q}}\). We show that, under certain hypotheses, the \({\mathbb{Z}_p}\) -corank of sel p ∞(A/F) is unbounded over finite extensions F/K contained in \({(K^{p-{\rm dihe}}_S)^{(\sigma)}/K}\). As a consequence, we prove a strengthened version of a conjecture of M. Larsen in a large number of cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coates, J., Fukaya, T., Kato, K., Sujatha, R., Venjakob, O.: The GL 2 main conjecture for elliptic curves without complex multiplication. Publ. Math. IHES 101 (2005)

  2. Dokchitser T.: Ranks of elliptic curves in cubic extensions. Acta Arith. 126, 357–360 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dokchitser V.: Root numbers of non-abelian twists of elliptic curves (appendix by T Fisher). Proc. Lond. Math. Soc. 91(3), 300–324 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dokchitser, T., Dokchitser, V.: Root numbers of elliptic curves in residue characteristic, vol. 2 (preprint). arXiv:math.NT/0612054

  5. Frey G., Jarden M.: Approximation theory and the rank of abelian varieties over large algebraic fields. Proc. Lond. Math. Soc. 28, 112–128 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  6. Haberland K.: Galois Cohomology of Algebraic Number Fields. VEB Deutscher Verlag der Wissenschaften, Berlin (1978)

    MATH  Google Scholar 

  7. Im, B.-H., Larsen, M.: Abelian varieties over cyclic fields. Am. J. Math. (to appear). arXiv: math.NT/0605444

  8. Im, B.-H., Lozano-Robledo, Á.: On products of quadratic twists and ranks of elliptic curves over large fields (to appear)

  9. Kato K.: p-adic Hodge theory and values of zeta functions of modular curves, Cohomologies p-adiques et applications arithmétiques III. AstéRisque 295(ix), 117–290 (2004)

    Google Scholar 

  10. Kim B-D.: The parity conjecture for elliptic curves at supersingular reduction primes. Composit. Math. 143, 47–72 (2007)

    Article  MATH  Google Scholar 

  11. Kobayashi E.: A remark on the Mordell-Weil rank of elliptic curves over the maximal abelian extension of the rational number field. Tokyo J. Math. 29, 2 (2006)

    Article  Google Scholar 

  12. Larsen M.: Rank of elliptic curves over almost algebraically closed fields. Bull. Lond. Math. Soc. 35, 817–820 (2003)

    Article  MATH  Google Scholar 

  13. Matsuura, R.: Root numbers of elliptic curves. Ph.D. Thesis, Boston University (in preparation)

  14. Mazur B.: Rational points of abelian varieties with values in towers of number fields. Invent. Math. 18, 183–266 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mazur, B., Rubin, K.: Finding large selmer rank via an arithmetic theory of local constants. Ann. Math. (to appear)

  16. Nekovář J.: On the parity of ranks of Selmer groups II. C. R. Acad. Sci. Paris Sér. I Math. 332, 99–104 (2001)

    MATH  Google Scholar 

  17. Petersen, S.: Root numbers and the rank of abelian varieties over large fields (dated July 26, 2006, preprint)

  18. Pop F.: Embedding problems over large fields. Ann. Math. (2) 144(1), 1–34 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ribet K.: Torsion points of abelian varieties in cyclotomic extensions. Enseign. Math. 27, 315–319 (1981)

    MathSciNet  Google Scholar 

  20. Rohrlich D.E.: Variation of the root number in families of elliptic curves. Composit. Math. tome 87(2), 119–151 (1993)

    MathSciNet  MATH  Google Scholar 

  21. Rohrlich D.E.: On L-functions of elliptic curves and cyclotomic towers. Invent. Math. 75, 404–423 (1984)

    Google Scholar 

  22. Rohrlich D.E.: On L-functions of elliptic curves and anticyclotomic towers. Invent. Math. 75(3), 383–408 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rohrlich D.E.: L-functions and division towers. Math. Ann. 281, 611–632 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rohrlich D.E.: Root numbers of semistable elliptic curves in division towers. Math. Res. Lett. 13(3), 359–376 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Ruppert, W.M.: Torsion points of abelian varieties over abelian extensions (to appear)

  26. Silverman J.H.: The Arithmetic of Elliptic Curves. Springer, New York (1986)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Álvaro Lozano-Robledo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lozano-Robledo, Á. Ranks of abelian varieties over infinite extensions of the rationals. manuscripta math. 126, 393–407 (2008). https://doi.org/10.1007/s00229-008-0189-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-008-0189-4

Mathematics Subject Classification (2000)

Navigation