Skip to main content
Log in

Forced convex mean curvature flow in Euclidean spaces

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We show the mean curvature flow of convex hypersurfaces in Euclidean spaces with a general forcing term may shrink to a point in finite time if the forcing term is small, or exist for all times and expand to infinity if the forcing term is large enough. The flow can converge to a round sphere in special cases. Long time existence and convergence of the normalization of the flow are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aarons M. (2005). Mean curvature flow with a forcing term in Minkowski space. Calc. Var. Partial Differ. Equ. 25(2): 205–246

    Article  MathSciNet  Google Scholar 

  2. Andrews B. (1994). Contraction of convex hypersurfaces in Euclidean space. Calc. Var. Partial Differ. Equ. 2(2): 151–171

    Article  MATH  Google Scholar 

  3. Chow B. and Gulliver R. (2001). Aleksandrov reflection and geometric evolution of hypersurfaces. Comm. Anal. Geom. 9(2): 261–280

    MathSciNet  MATH  Google Scholar 

  4. Chou K. and Wang X. (2000). A logarithmic Gauss curvature flow and the Minkowski problem. Ann. Inst. Henri Poincaré Anal Non Linéaire 17(6): 733–751

    Article  MathSciNet  MATH  Google Scholar 

  5. Gerhardt C. (1990). Flow of nonconvex hypersurfaces into spheres. J. Differ. Geom. 32: 299–314

    MathSciNet  MATH  Google Scholar 

  6. Hamilton R. (1982). Three manifolds with positive Ricci curvature. J. Differ. Geom. 17: 255–306

    MathSciNet  MATH  Google Scholar 

  7. Huisken G. (1984). Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 20(1): 237–266

    MathSciNet  MATH  Google Scholar 

  8. Huisken G. (1987). The volume preserving mean curvature flow. J. Reine Angew. Math. 382: 35–48

    MathSciNet  MATH  Google Scholar 

  9. Huisken, G., Polden, A.: Geometric Evolution Equations for Hypersurfaces. Calculus of Variations and Geometric Evolution Problems. Lecture Notes in Mathematics, vol. 1713, pp. 45–84. Springer, Berlin (1999)

  10. Krylov, N.: Nonlinear Elliptic and Parabolic Equations of the Second Order. D. Reidel Publishing Company (1987)

  11. Liu Y. and Jian H. (2007). Evolution of hypersurfaces by mean curvature minus extermal force field. Sci. China Ser A 50: 231–239

    Article  MathSciNet  MATH  Google Scholar 

  12. McCoy J. (2003). The surface area preserving mean curvature flow. Asian J. Math. 7(1): 7–30

    MathSciNet  MATH  Google Scholar 

  13. McCoy J. (2004). The mixed volume preserving mean curvature flow. Math. Z. 246(1–2): 155–166

    Article  MathSciNet  MATH  Google Scholar 

  14. Schnürer O. and Smoczyk K. (2002). Evolution of hypersurfaces in cental force fields. J. Reine Angew Math. 550: 77–95

    MathSciNet  MATH  Google Scholar 

  15. Tso K. (1985). Deforming a hypersurface by its Gauss–Kronecker curvature. Comm. Pure Appl. Math. 38(6): 867–882

    Article  MathSciNet  MATH  Google Scholar 

  16. Urbas J.I.E. (1991). An expansion of convex hypersurfaces. J. Differ. Geom. 33(1): 91–125

    MathSciNet  MATH  Google Scholar 

  17. Zhu, X.: Lectures on mean curvature flows. AMS/IP Studies in Advanced Mathematics, vol. 32. American Mathematical Society. International Press, Providence (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Salavessa.

Additional information

The first author is partially supported by NSFC (No.10501011) and by Fundação Ciência e Tecnologia (FCT) through a FCT fellowship SFRH/BPD/26554/2006. The second author is partially supported by FCT through the Plurianual of CFIF and POCI/MAT/60671/2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G., Salavessa, I. Forced convex mean curvature flow in Euclidean spaces. manuscripta math. 126, 333–351 (2008). https://doi.org/10.1007/s00229-008-0181-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-008-0181-z

Mathematics Subject Classification (2000)

Navigation