Skip to main content
Log in

Minimal surfaces, Hopf differentials and the Ricci condition

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We deal with minimal surfaces in a sphere and investigate certain invariants of geometric significance, the Hopf differentials, which are defined in terms of the complex structure and the higher fundamental forms. We discuss the holomorphicity of Hopf differentials and provide a geometric interpretation for it in terms of the higher curvature ellipses. This motivates the study of a class of minimal surfaces, which we call exceptional. We show that exceptional minimal surfaces are related to Lawson’s conjecture regarding the Ricci condition. Indeed, we prove that, under certain conditions, compact minimal surfaces in spheres which satisfy the Ricci condition are exceptional. Thus, under these conditions, the proof of Lawson’s conjecture is reduced to its confirmation for exceptional minimal surfaces. In fact, we provide an affirmative answer to Lawson’s conjecture for exceptional minimal surfaces in odd dimensional spheres or in S 4m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asperti, A.C., Ferus, D., Rodriguez, L.: Surfaces with non-zero normal curvature tensor. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 73, 109–115 (1982)

    MathSciNet  Google Scholar 

  2. Asperti, A.C.: Generic minimal surfaces. Math. Z. 200, 181–186 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barbosa, J.L.M.: On minimal immersions of S 2 into S 2m. Trans. Amer. Math. Soc. 210, 75–106 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barbosa, J.L.M.: An extrinsic rigidity theorem for minimal immersions from S 2 into S n. J. Differ. Geom. 14, 355–368 (1979)

    MATH  MathSciNet  Google Scholar 

  5. Bolton, J., Pedit, F., Woodward, L.: Minimal surfaces and the affine Toda field model. J. Reine Angew. Math. 459, 119–150 (1995)

    MATH  MathSciNet  Google Scholar 

  6. Calabi, E.: Minimal immersions of surfaces in Euclidean spheres. J. Differ. Geom. 1, 111–125 (1967)

    MATH  MathSciNet  Google Scholar 

  7. Chen, C.C.: The generalized curvature ellipses and minimal surfaces. Bull. Inst. Math. Acad. Sin. 11, 329–336 (1983)

    MATH  Google Scholar 

  8. Chern, S.S.: On the minimal immersions of the two-sphere in a space of constant curvature. Problems in Analysis, pp. 27–40. University Press, Princeton (1970)

    Google Scholar 

  9. Chern, S.S., Wolfson, J.D.: Minimal surfaces by moving frames. Amer. J. Math. 105, 59–83 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  10. Eschenburg, J.H., Guadalupe, I.V., Tribuzy, R.: The fundamental equations of minimal surfaces in \({\mathbb{C}}P^{2}\) . Math. Ann. 270, 571–598 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  11. Eschenburg, J.H., Tribuzy, R.: Branch points of conformal mappings of surfaces. Math. Ann. 279, 621–633 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  12. Johnson, G.D.: An intrinsic characterization of a class of minimal surfaces in constant curvature manifolds. Pacific J. Math. 149, 113–125 (1991)

    MATH  MathSciNet  Google Scholar 

  13. Kenmotsu, K.: On compact minimal surfaces with non-negative Gaussian curvature in a space of constant curvature I. Tohoku Math. J. 25, 469–479 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kenmotsu, K.: On compact minimal surfaces with non-negative Gaussian curvature in a space of constant curvature II. Tohoku Math. J. 27, 291–301 (1973)

    Article  MathSciNet  Google Scholar 

  15. Kenmotsu, K.: On minimal immersions of \({\mathbb{R}}^{2}\) into S N. J. Math. Soc. Japan 28, 182–191 (1976)

    MATH  MathSciNet  Google Scholar 

  16. Lawson, H.B.: Complete minimal surfaces in S 3. Ann. Math. (2) 92, 335–374 (1970)

    Article  MathSciNet  Google Scholar 

  17. Lawson, H.B.: Some intrinsic characterizations of minimal surfaces. J. Anal. Math. 24, 151–161 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  18. Miyaoka, R.: The family of isometric superconformal harmonic maps and the affine Toda equations. J. Reine Angew. Math. 481, 1–25 (1996)

    MATH  MathSciNet  Google Scholar 

  19. Miyaoka, R.: The splitting and deformations of the generalized Gauss map of compact CMC surfaces. Tohoku Math. J. 51, 35–53 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Naka(=Miyaoka), R.: Some results on minimal surfaces with the Ricci condition. In: Obeta, M. (ed.) Minimal Submanifolds and Geodesics, pp. 121–142. Kaigai Pub. Ltd, Tokyo (1978)

  21. Otsuki, T.: Minimal submanifolds with m-index 2 and generalized Veronese surfaces. J. Math. Soc. Japan 24, 89–122 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sakaki, M.: Minimal surfaces with the Ricci condition in 4-dimensional space forms. Proc. Amer. Math. Soc. 121, 573–557 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  23. Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. IV. Publish or Perish, Berkeley (1979)

    MATH  Google Scholar 

  24. Vlachos, Th.: Congruence of minimal surfaces and higher fundamental forms. Manusucripta Math. 110, 77–91 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodoros Vlachos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlachos, T. Minimal surfaces, Hopf differentials and the Ricci condition. manuscripta math. 126, 201–230 (2008). https://doi.org/10.1007/s00229-008-0174-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-008-0174-y

Mathematics Subject Classification (2000)

Navigation