Skip to main content
Log in

Pólya and Newtonian function fields

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Let \(K/\mathbb {F}_q (T)\) be a finite function field extension and denote by O K the integral closure of \(\mathbb {F}_q [T]\) in K. In this article, we are interested in Pólya fields, that is, fields K, such that the O K -module Int(O K ) of integer-valued polynomials over O K admits a regular basis. We show that the cyclotomic extensions of \(\mathbb {F}_q (T)\) are Pólya fields, and we characterize some totally imaginary extensions which are Pólya fields. Then, we are interested in Pólya fields K which have a regular basis of the form \(\left\{\prod_{0\le k < n}\frac{X-a_k}{a_n-a_k},\,n\in\mathbb {N}\right\}\) for some sequences \((a_n)_{n\in\mathbb {N}}\) of elements of O K . For totally imaginary extensions, we show that it is the case if and only if O K is isomorphic to \(\mathbb {F}_q [T]\). This gives a answer to a question raised by Thakur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adam, D.: Fonctions et polynômes à valeurs entières en caractéristique finie. Thesis, Université de Picardie Jules Verne at Amiens (2004)

  2. Adam D. (2005). Simultaneous orderings in function fields. J. Number Theory 112(2): 287–297

    Article  MathSciNet  MATH  Google Scholar 

  3. Bhargava M. (1997). P-orderings and polynomial functions on arbitrary subsets of Dedekind rings. J. Reine Angew. Math. 490: 101–127

    MathSciNet  MATH  Google Scholar 

  4. Bhargava M. (2000). The factorial function and generalizations. Am. Math. Mon. 107: 783–799

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourbaki N. (1967). Algèbre. Hermann, Paris

    Google Scholar 

  6. Cahen, P.J., Chabert, J.L.: Integer-valued polynomials. In: Mathematical Survey and Monographs, vol. 48. American Mathematical Society, Providence (1997)

  7. Cahen, P.J., Chabert, J.L.: Old problems and new questions around integer-valued polynomials and factorial Sequences. In: Multiplicative Ideal Theory in Commutative Algebra. pp. 89–108. Springer, New York (2006)

  8. Car M. (1995). Répartition modulo 1 dans un corps de série formelle sur un corps fini. Acta Arith. 69(3): 229–242

    MathSciNet  MATH  Google Scholar 

  9. Car, M.: Polynômes à valeurs entières dans \(\mathbb {F}_q [T]\). Seminar GTATN at Amiens, January 30, 2002

  10. Fraatz, R.: Computation of maximal orders of cyclic extensions of function fields. Thesis, Technische Universität, Berlin (2005)

  11. Hayes D.R. (1974). Explicit class field theory for rational function fields. Trans. Am. Math. Soc. 189: 77–91

    Article  MathSciNet  MATH  Google Scholar 

  12. Hellegouarch Y., McQuillan D.L. and Paysant-Le Roux R. (1987). Unités de certains sous-anneaux des corps de fonctions algébriques. Acta Arith. 48(1): 9–47

    MathSciNet  MATH  Google Scholar 

  13. Ostrowski A. (1919). Über ganzwertige Polynome in algebraischen Zahlkörpen. J. Reine Angew. Math. 149: 117–124

    MATH  Google Scholar 

  14. Pólya G. (1919). Über ganzwertige Polynome in algebraischen ZahlKörpen. J. Reine Angew. Math. 149: 97–116

    MATH  Google Scholar 

  15. Rosen, M.: Number theory in function fields. In: Graduate Texts in Mathematics, vol. 210. Springer, New York (2002)

  16. Stichtenoth, H.: Algebraic function fields and codes. In: Universitext. Springer, New York (1993)

  17. Thakur D. (2004). Function Field Arithmetic. World Scientific Publishing Co., Inc., River Edge

    MATH  Google Scholar 

  18. Van der Linden F.J. (1988). Integer valued polynomials over functions fields. Neder. Akad. Wetensch. Indag. Math 50: 293–308

    MathSciNet  Google Scholar 

  19. Witt E. (1936). Zyklische Körper und Algebren der Characteristik vom Grad p n. J. Reine Angew. Math. 174: 126–140

    Google Scholar 

  20. Wood M. (2003). P-orderings: a metric viewpoint and the non-existence of simultaneous orderings. J. Number Theory 99: 36–a56

    Article  MathSciNet  MATH  Google Scholar 

  21. Zantema: Integer valued polynomials over a number field. In: Manuscr. Math., vol. 40, pp. 155–203 (1982)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Adam.

Additional information

The author thanks his thesis adviser Jean-Luc Chabert, and Mireille Car for their help, and their valuable advices to do this work. The author thanks also the referee for his valuable remarks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adam, D. Pólya and Newtonian function fields. manuscripta math. 126, 231–246 (2008). https://doi.org/10.1007/s00229-008-0173-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-008-0173-z

Mathematics Subject Classification (2000)

Navigation