Skip to main content
Log in

Fine continuity on metric spaces

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We obtain pointwise estimates for solutions of obstacle problems on metric measure spaces and prove that p-superharmonic functions are p-finely continuous. Consequently, we show that p-quasicontinuous functions are p-finely continuous at p-quasievery point. As a byproduct, we obtain the sufficiency part of the Wiener criterion in metric spaces without the assumption of linear local connectedness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams D.R. and Lewis J.L. (1985). Fine and quasi connectedness in nonlinear potential theory. Ann. Inst. Fourier (Grenoble) 35(1): 57–73

    MATH  MathSciNet  Google Scholar 

  2. Björn A. (2005). Characterizations of p-superharmonic functions on metric spaces. Studia Math. 169: 45–62

    Article  MATH  MathSciNet  Google Scholar 

  3. Björn A. and Björn J. (2006). Boundary regularity for p-harmonic functions and solutions of the obstacle problem on metric spaces. J. Math. Soc. Jpn. 58: 1211–1232

    Article  MATH  Google Scholar 

  4. Björn A. and Marola N. (2006). Moser iteration for (quasi)minimizers on metric spaces. Manuscripta Math. 121: 339–366

    Article  MATH  MathSciNet  Google Scholar 

  5. Björn A., Björn J. and Shanmugalingam N. (2003). The Perron method for p-harmonic functions. J. Differen. Equat. 195: 398–429

    Article  MATH  Google Scholar 

  6. Björn, A., Björn, J., Shanmugalingam, N.: Quasicontinuity of Newton–Sobolev functions and density of Lipschitz functions on metric spaces. Houston J. Math. (to appear)

  7. Björn J. (2002). Boundary continuity for quasiminimizers on metric spaces. Illinois J. Math. 46: 383–403

    MATH  MathSciNet  Google Scholar 

  8. Björn J., MacManus P. and Shanmugalingam N. (2001). Fat sets and pointwise boundary estimates for p-harmonic functions in metric spaces. J. Anal. Math. 85: 339–369

    MATH  MathSciNet  Google Scholar 

  9. Brelot M. (1971). On Topologies and Boundaries in Potential Theory. Lecture Notes in Mathematics 175. Springer, Berlin

    Google Scholar 

  10. Cartan H. (1946). Théorie général du balayage en potential newtonien. Ann. Univ. Grenoble Math. Phys. 22: 221–280

    MathSciNet  Google Scholar 

  11. Cheeger J. (1999). Differentiability of Lipschitz functions on metric spaces. Geom. Funct. Anal. 9: 428–517

    Article  MATH  MathSciNet  Google Scholar 

  12. Deny J. (1950). Les potentials d’énergie finie. Acta Math. 82: 107–183

    Article  MathSciNet  Google Scholar 

  13. Fuglede B. (1971). The quasi topology associated with a countably subadditive set function. Ann. Inst. Fourier (Grenoble) 21(1): 123–169

    MATH  MathSciNet  Google Scholar 

  14. Hajłasz P. (1995). Sobolev spaces on an arbitrary metric space. Potential Anal. 5: 403–415

    Google Scholar 

  15. Hedberg L.I. and Wolff T.H. (1983). Thin sets in nonlinear potential theory. Ann. Inst. Fourier (Grenoble) 33(4): 161–187

    MATH  MathSciNet  Google Scholar 

  16. Heinonen J., Kilpeläinen T. and Martio O. (2006). Nonlinear Potential Theory of Degenerate Elliptic Equations. Dover, Mineola, NY

    MATH  Google Scholar 

  17. Heinonen J. and Koskela P. (1998). Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181: 1–61

    Article  MATH  MathSciNet  Google Scholar 

  18. Keith, S., Zhong, X.: The Poincaré inequality is an open ended condition. Ann. Math. (to appear)

  19. Kinnunen, J., Latvala, V.: Fine regularity of superharmonic functions on metric spaces. In: Future Trends in Geometric Function Theory RNC Workshop Jyväskylä 2003, Rep. Univ. Jyväskylä Dep. Math. Stat. 92, pp. 157–167, Univ. Jyväskylä, Jyväskylä (2003)

  20. Kinnunen J. and Martio O. (1996). The Sobolev capacity on metric spaces. Ann. Acad. Sci. Fenn. Math. 21: 367–382

    MATH  MathSciNet  Google Scholar 

  21. Kinnunen J. and Martio O. (2002). Nonlinear potential theory on metric spaces. Illinois Math. J. 46: 857–883

    MATH  MathSciNet  Google Scholar 

  22. Kinnunen J. and Shanmugalingam N. (2001). Regularity of quasi-minimizers on metric spaces. Manuscripta Math. 105: 401–423

    Article  MATH  MathSciNet  Google Scholar 

  23. Lindqvist P. and Martio O. (1985). Two theorems of N. Wiener for solutions of quasilinear elliptic equations. Acta Math. 155: 153–171

    MATH  MathSciNet  Google Scholar 

  24. Malý, J., Ziemer, W.P.: Fine Regularity of Solutions of Elliptic Partial Differential Equations. Math. Surveys and Monographs 51, Amer. Math. Soc., Providence, RI (1997)

  25. Shanmugalingam N. (2000). Newtonian spaces: An extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoamericana 16: 243–279

    MATH  MathSciNet  Google Scholar 

  26. Shanmugalingam N. (2001). Harmonic functions on metric spaces. Illinois J. Math. 45: 1021–1050

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Björn.

Additional information

The author was supported by the Swedish Research Council.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Björn, J. Fine continuity on metric spaces. manuscripta math. 125, 369–381 (2008). https://doi.org/10.1007/s00229-007-0154-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-007-0154-7

Mathematics Subject Classification (2000)

Navigation