Skip to main content
Log in

Oriented Chow groups, Hermitian K-theory and the Gersten conjecture

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We show that the oriented Chow groups of Barge–Morel appear in the E 2-term of the coniveau spectral sequence for Hermitian K-theory. This includes a localization theorem and the Gersten conjecture (over infinite base fields) for Hermitian K-theory. We also discuss the conjectural relationship between oriented and higher oriented Chow groups and Levine’s homotopy coniveau spectral sequence when applied to Hermitian K-theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balmer P. (2000). Triangular Witt groups. I. The 12-term localization exact sequence. K-Theory 19(4): 311–363

    Article  MATH  MathSciNet  Google Scholar 

  2. Balmer P. (2001). Triangular Witt groups Part II: from usual to derived. Math. Z. 236: 351–382

    Article  MATH  MathSciNet  Google Scholar 

  3. Balmer P. and Preeti R. (2005). Shifted Witt groups of semi-local rings. Manuscri. Math. 117(1): 1–27

    Article  MATH  MathSciNet  Google Scholar 

  4. Balmer P. and Walter C. (2002). A Gersten–Witt spectral sequence for regular schemes. Annales Scientifiques de l’ENS. 35(1): 127–152

    MATH  MathSciNet  Google Scholar 

  5. Barge J. and Morel F. (2000). Groupe de Chow des cycles orientés et classe d’Euler des fibrés vectoriels. C. R. Acad. Sci. Paris Sér. I Math. 330(4): 287–290

    MATH  MathSciNet  Google Scholar 

  6. Calmes, B., Hornbostel, J.: Witt motives, transfers and dévissage (2006, preprint). http://www.math.uiuc.edu/K-theory/

  7. Colliot-Thélène, J.-L., Hoobler, R.T., Kahn, B.: The Bloch–Ogus–Gabber theorem. In: Algebraic K-Theory (Toronto, ON, 1996). Fields Inst. Commun., vol. 16, pp. 31–94, Am. Math. Soc., Providence (1997)

  8. Fasel, J.: The oriented Chow ring (2006, preprint). http://www.math.uiuc.edu/K-theory/

  9. Fasel, J., Srinivas, V.: A vanishing theorem for oriented intersection multiplicities (2007, preprint). http://www.math.uiuc.edu/K-theory/

  10. Fasel, J., Srinivas, V.: Chow–Witt groups and Grothendieck–Witt groups of triangulated categories (2007, preprint). http://www.math.uiuc.edu/K-theory/

  11. Hornbostel J. (2002). Constructions and dévissage in Hermitian K-theory. K-Theory 26(2): 139–170

    Article  MATH  MathSciNet  Google Scholar 

  12. Hornbostel J. (2005). A 1-representability of Hermitian K-theory and Witt groups. Topology 44: 661–687

    Article  MATH  MathSciNet  Google Scholar 

  13. Hornbostel J. and Schlichting M. (2004). Localization in Hermitian K-theory of rings. J. Lond. Math. Soc. (2) 70(1): 77–124

    Article  MATH  MathSciNet  Google Scholar 

  14. Karoubi M. (1974). Localisation de formes quadratiques I. Ann. Sci. Ec. Norm. Sup. 7(4): 359–403

    MATH  MathSciNet  Google Scholar 

  15. Karoubi M. (1975). Localisation de formes quadratiques II. Ann. Sci. Ec. Norm. Sup. 8(4): 99–155

    MATH  MathSciNet  Google Scholar 

  16. Karoubi M. (1980). Le théorème fondamental de la K-théorie hermitienne. Ann. Math. 112: 259–282

    Article  MathSciNet  Google Scholar 

  17. Kobal D. (1999). K-theory, Hermitian K-theory and the Karoubi tower. K-Theory 17: 113–140

    Article  MATH  MathSciNet  Google Scholar 

  18. Levine, M.: The homotopy coniveau filtration (2005, preprint). http://www.math.neu.edu/~levine/mathindex.html

  19. Morel, F.: On the motivic π0 of the sphere spectrum. Axiomatic, enriched and motivic homotopy theorey. In: Proceedings of the 2002 Conference at the Newton Institute, 2004

  20. Morel, F.: A 1-homotopy classification of vector bundles over smooth affine schemes (2007, preprint). http://www.mathematik.uni-muenchen.de/~morel/preprint.html

  21. Morel F. and Voevodsky V. (1999). A 1-homotopy theory of schemes. Publ. Math. IHES 90: 45–143

    MATH  MathSciNet  Google Scholar 

  22. Quillen, D.: Higher algebraic K-theory. I. Algebraic K-theory, I: Higher K-theories. In: Proc. Conf., Battelle Memorial Inst., Seattle, Wash. 1972. Lecture Notes in Mathematics, vol. 341, pp. 85–147, Springer, Berlin (1973)

  23. Rost M. (1996). Chow groups with coefficients. Doc. Math. 1: 319–393

    MATH  MathSciNet  Google Scholar 

  24. Schlichting, M.: Matsumoto’s theorem for quadratic forms. Preliminary version (2005). http://www.math.lsu.edu/~mschlich/research/prelim.html

  25. Schlichting, M.: Hermitian K-theory of schemes and derived categories, in preparation. Available at http://www.math.lsu.edu/~mschlich/research/prelim.html

  26. Voevodsky V. (2003). Motivic cohomology with Z/2-coefficients. Publ. Math. Inst. Hautes Études Sci. 98: 59–104

    MATH  MathSciNet  Google Scholar 

  27. Voevodsky, V.: Open problems in the motivic stable homotopy theory. I. Motives, polylogarithms and Hodge theory, Part I (Irvine, CA, 1998). Int. Press. Lect. Ser., vol. 3, pp. 3–34, I. Int. Press, Sommerville (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Hornbostel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hornbostel, J. Oriented Chow groups, Hermitian K-theory and the Gersten conjecture. manuscripta math. 125, 273–284 (2008). https://doi.org/10.1007/s00229-007-0148-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-007-0148-5

Mathematics Subject Classification (2000)

Navigation