Skip to main content
Log in

\({\mathcal{R}}\) -boundedness, pseudodifferential operators, and maximal regularity for some classes of partial differential operators

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

It is shown that an elliptic scattering operator A on a compact manifold with boundary with operator valued coefficients in the morphisms of a bundle of Banach spaces of class (\({\mathcal{HT}}\)) and Pisier’s property (α) has maximal regularity (up to a spectral shift), provided that the spectrum of the principal symbol of A on the scattering cotangent bundle avoids the right half-plane. This is accomplished by representing the resolvent in terms of pseudodifferential operators with \({\mathcal{R}}\) -bounded symbols, yielding by an iteration argument the \({\mathcal{R}}\) -boundedness of λ(A−λ)−1 in \(\Re(\lambda) \geq \gamma\) for some \(\gamma \in {\mathbb{R}}\) . To this end, elements of a symbolic and operator calculus of pseudodifferential operators with \({\mathcal{R}}\) -bounded symbols are introduced. The significance of this method for proving maximal regularity results for partial differential operators is underscored by considering also a more elementary situation of anisotropic elliptic operators on \({\mathbb{R}}^{d}\) with operator valued coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann H. (1995). Linear and Quasilinear Parabolic Problems I, Abstract Linear Theory, Monographs in Mathematics, vol. 89. Birkhäuser Verlag, Basel

    Google Scholar 

  2. Amann H. (2000). Coagulation-fragmentation processes. Arch. Ration. Mech. Anal. 151: 339–366

    Article  MATH  MathSciNet  Google Scholar 

  3. Clément P., de Pagter B., Sukochev F.A. and Witvliet H. (2000). Schauder decompositions and multiplier theorems. Stud. Math. 138(2): 135–163

    MATH  Google Scholar 

  4. Denk, R., Hieber, M., Prüss, J.: \({\mathcal{R}}\) -boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 788 (2003)

  5. Dore G. and Venni A. (1987). On the closedness of the sum of two closed operators. Math. Z. 196: 189–201

    Article  MATH  MathSciNet  Google Scholar 

  6. Girardi, M., Weis, L.: Criteria for \({\mathcal{R}}\) -boundedness of operator families. In: Ruiz Goldstein, G., et al. (eds) Evolution Equations. Lecture Notes in Pure and Appl. Math., vol. 234, pp. 203–221, Marcel Dekker, New York (2003)

  7. Hieber M. and Prüss J. (1997). Heat kernels and maximal L p-L q estimates for parabolic evolution equations. Comm. Partial Diff. Equ. 22: 1647–1669

    Article  MATH  Google Scholar 

  8. Hytönen, T., Portal, P.: Vector-valued multiparameter singular integrals and pseudodifferential operators. Preprint (2005)

  9. Kunstmann, P.C., Weis, L.: Maximal L p -regularity for parabolic equations, Fourier multiplier theorems and H -functional calculus. Functional analytic methods for evolution equations. Lecture Notes in Math., vol. 1855, pp. 65–311. Springer, Heidelberg (2004)

  10. Mazzucato A. and Nistor V. (2006). Mapping properties of heat kernels, maximal regularity and semi-linear parabolic equations on noncompact manifolds. J. Hyperb. Diff. Equ. 3: 599–629

    Article  MATH  MathSciNet  Google Scholar 

  11. Melrose, R.: Geometric Scattering Theory. Stanford Lecture Notes in Mathematics. Cambridge University Press, London (1995)

  12. Pisier G. (1978). Some results on Banach spaces without local unconditional structure. Comp. Math. 37: 3–19

    MATH  MathSciNet  Google Scholar 

  13. Portal P. and Strkalj Z. (2006). Pseudodifferential operators on Bochner spaces and an application. Math. Z. 253: 805–819

    Article  MATH  MathSciNet  Google Scholar 

  14. Prüss J. (2002). Maximal regularity for evolution equations in L p -spaces. Conf. Semin. Mat. Univ. Bari 285: 1–39

    Google Scholar 

  15. Seeley, R.T.: Complex powers of an elliptic operator. Am. Math. Soc. Proc. Symp. Pure Math., vol. 10, pp. 288–307. Am. Math. Soc., Providence, Rhode Island (1967)

  16. Shubin M.A. (1987). Pseudodifferential Operators and Spectral Theory. Springer, Berlin

    MATH  Google Scholar 

  17. Strkalj, Z.: \({\mathcal{R}}\) -Beschränktheit, Summensätze abgeschlossener Operatoren, und operatorwertige Pseudodifferentialoperatoren. Ph.D. thesis, University of Karlsruhe (2000)

  18. Weis L. (2001). Operator-valued Fourier multiplier theorems and maximal L p -regularity. Math. Ann. 319(4): 735–758

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Krainer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denk, R., Krainer, T. \({\mathcal{R}}\) -boundedness, pseudodifferential operators, and maximal regularity for some classes of partial differential operators. manuscripta math. 124, 319–342 (2007). https://doi.org/10.1007/s00229-007-0131-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-007-0131-1

Mathematics Subject Classification (2000)

Navigation