Skip to main content
Log in

Ore extensions which are GPI-rings

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Let R be a prime ring and δ a σ-derivation of R, where σ is an automorphism of R. It is proved that the skew polynomial ring \(R[t; \sigma, \delta]\) is a GPI-ring (PI-ring resp.) if and only if R is a GPI-ring (PI-ring resp.), δ is quasi-algebraic, and σ is quasi-inner. If \(R[t; \sigma, \delta]\) is a GPI-ring then soc \((Q[t;\sigma,\delta]\tilde C) = \Big({\rm soc}(Q)[t;\sigma,\delta]\Big)\tilde C\) , where Q is the symmetric Martindale quotient ring of R and where \(\tilde C\) denotes the extended centroid of \(Q[t; \sigma, \delta]\) . If \(R[t; \sigma, \delta]\) is a PI-ring, its PI-degree is determined as follows: \((1) {\rm PI-deg}(R[t; \sigma, \delta]) = {\rm PI-deg}(R) \times {\rm out-deg}(\delta)\) if δ is X-outer, and \((2) {\rm PI-deg}(R[t; \sigma, \delta]) = {\rm PI-deg}(R) \times {\rm out-deg}(\sigma)\) if δ is X-inner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amitsur A.S. (1948). A generalization of a theorem on linear differential equations. Bull. Am. Math. Soc. 54: 937–941

    Article  MATH  MathSciNet  Google Scholar 

  2. Amitsur A.S. (1965). Generalized polynomial identities and pivotal monomials. Trans. Am. Math. Soc. 114: 210–226

    Article  MATH  MathSciNet  Google Scholar 

  3. Beidar, K.I., Martindale, W.S. III, Mikhalev, A.V.: Rings with Generalized Identities. Marcel Dekker, Inc., New York (1996)

  4. Cauchon G. (1977). Les t-anneaux et les anneaux à identités polynomiales noethériens, thèse. Univ. Paris XI, Orsay

    Google Scholar 

  5. Chuang C.-L. (1988). GPIs having coefficients in Utumi quotient rings. Proc. Am. Math. Soc. 103(3): 723–728

    Article  MATH  MathSciNet  Google Scholar 

  6. Chuang C.-L. and Lee T.-K. (2004). Algebraic q-skew derivations. J. Algebra 282(1): 1–22

    Article  MATH  MathSciNet  Google Scholar 

  7. Chuang C.-L. and Lee T.-K. (2005). Identities with a single skew derivation. J. Algebra 288(1): 59–77

    Article  MATH  MathSciNet  Google Scholar 

  8. Damiano R.F. and Shapiro J. (1985). Twisted polynomial rings satisfying a polynomial identity. J. Algebra 92(1): 116–127

    Article  MATH  MathSciNet  Google Scholar 

  9. Jacobson, N., PI-algebras: An introduction. Lecture Notes in Mathematics, vol 441. Springer, Berlin (1975).

  10. Jacobson N. (1980). Basic Algebra II. W. H. Freeman and Co., San Francisco

    MATH  Google Scholar 

  11. Jacobson N. (1996). Finite-Dimensional Division Algebras over Fields. Springer, Berlin

    MATH  Google Scholar 

  12. Jondrup S. (2000). Representations of skew polynomial algebras. Proc. Am. Math. Soc. 128(5): 1301–1305

    Article  MathSciNet  Google Scholar 

  13. Jondrup S. (2003). Representations of some PI algebras. Commun. Algebra 31(6): 2587–2602

    Article  MathSciNet  Google Scholar 

  14. Kharchenko V.K. (1975). Generalized identities with automorphisms. Algebra i Logika 14: 132–148

    Article  Google Scholar 

  15. Kharchenko, V.K.: Differential identities of prime rings. Algebra i Logika 17, 220–238 (1978). (Engl. Transl., Algebra and Logic 17 (1978), 154–168.)

  16. Kharchenko, V.K.: Differential identities of semiprime rings. Algebra i Logika 18, 86–119 (1979) (Engl. Transl., Algebra and Logic 18 (1979), 58–80.)

  17. Kharchenko V.K. and Popov A.Z. (1992). Skew derivations of prime rings. Commun. Algebra 20(11): 3321–3345

    Article  MATH  MathSciNet  Google Scholar 

  18. Lee T.-K. and Wong T.-L. (2003). Semiprime algebras with finiteness conditions. Commun. Algebra 31(4): 1823–1835

    Article  MATH  MathSciNet  Google Scholar 

  19. Leroy, A.: S-derivations algebriques sur les anneaux premiers. (French) [Algebraic S-derivations over prime rings] Ring theory (Antwerp, 1985). Lecture Notes in Math., vol 1197, pp 114–120. Springer, Berlin (1986)

  20. Leroy A. and Matczuk J. (1992). The extended centroid and X-inner automorphisms of Ore extensions. J. Algebra 145(1): 143–177

    Article  MATH  MathSciNet  Google Scholar 

  21. Leroy A. and Matczuk J. (2006). Ore extensions satisfying a polynomial identity. J. Algebra Appl. 5(3): 287–306

    Article  MATH  MathSciNet  Google Scholar 

  22. Martindale W.S. (1969). Prime rings satisfying a generalized polynomial identity. J. Algebra 12: 576–584

    Article  MATH  MathSciNet  Google Scholar 

  23. Matczuk J. (1988). Extended centroids of skew polynomial rings. Math. J. Okayama Univ. 30: 13–20

    MATH  MathSciNet  Google Scholar 

  24. Montgomery, S.: Fixed Rings of Finite Automorphism Groups of Associative Rings. Lecture Notes in Mathematics, vol 818. Springer, Berlin (1980)

  25. Pascaud J.L. and Valette J. (1988). Polynômes tordus à identité polynomiale. Commun. Algebra 16(11): 2415–2425

    Article  MATH  MathSciNet  Google Scholar 

  26. Rosen J.D. and Rosen M.P. (1993). The Martindale ring of quotients of a skew polynomial ring of automorphism type. Commun. Algebra 21(11): 4051–4063

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-Lian Chuang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chuang, CL., Lee, TK. Ore extensions which are GPI-rings. manuscripta math. 124, 45–58 (2007). https://doi.org/10.1007/s00229-007-0129-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-007-0129-8

Mathematics Subject Classification (2000)

Navigation