Skip to main content
Log in

A degree theoretic approach for multiple solutions of constant sign for nonlinear elliptic equations

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We consider nonlinear elliptic equations driven by the p-Laplacian differential operator. Using degree theoretic arguments based on the degree map for operators of type (S)+ , we prove theorems on the existence of multiple nontrivial solutions of constant sign.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann H. (1976). Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18: 620–709

    Article  MATH  MathSciNet  Google Scholar 

  2. Amann H. (1982). A note on degree theory for gradient mappings. Proc. Am. Math. Soc. 85: 591–595

    Article  MATH  MathSciNet  Google Scholar 

  3. Amann H. and Zehnder E. (1980). Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 7(5): 539–603

    MATH  MathSciNet  Google Scholar 

  4. Ambrosetti A., Brezis H. and Cerami G. (1994). Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122: 519–543

    Article  MATH  MathSciNet  Google Scholar 

  5. Ambrosetti A., García Azorero J. and Peral Alonso I. (1996). Multiplicity results for some nonlinear elliptic equations. J. Funct. Anal. 137: 219–242

    Article  MATH  MathSciNet  Google Scholar 

  6. Anane A. (1987). Simplicité et isolation de la première valeur propre du p-Laplacien avec poids. C. R. Acad. Sci. Paris Sér. I Math. 305: 725–728

    MATH  MathSciNet  Google Scholar 

  7. Anello G. and Cordaro G. (2002). Infinitely many arbitrarily small positive solutions for the Dirichlet problem involving the p-Laplacian. Proc. R. Soc. Edinb. Sect. A 132: 511–519

    Article  MathSciNet  Google Scholar 

  8. Brezis H. and Nirenberg L. (1993). H 1 versus C 1 local minimizers. C. R. Acad. Sci. Paris Sér. I Math. 317: 465–472

    MATH  MathSciNet  Google Scholar 

  9. Browder F. (1983). Fixed point theory and nonlinear problems. Bull. Am. Math. Soc. (N.S.) 9: 1–39

    Article  MATH  MathSciNet  Google Scholar 

  10. Browder, F.: Degree theory for nonlinear mappings. In: Proc. Sympos. Pure Math., 45, Part 1, Am. Math. Soc., Providence, RI, pp. 203–226 (1986)

  11. Brown K.J. and Budin H. (1977). Multiple positive solutions for a class of nonlinear boundary value problems. J. Math. Anal. Appl. 60: 329–338

    Article  MATH  MathSciNet  Google Scholar 

  12. Dancer E.N. and Du Y. (1997). A note on multiple solutions for some semilinear elliptic problems. J. Math. Anal. Appl. 211: 626–640

    Article  MATH  MathSciNet  Google Scholar 

  13. De Figueiredo, D.: Positive solutions of semilinear elliptic problems. In: “Differential equations” Proceedings of Sao Paulo Conference 1981, Lecture Notes in Mathematics, vol. 957, pp. 34–87. Springer, Berlin (1982)

  14. De Figueiredo D. and Lions P.-L. (1985). On pairs of positive solutions for a class of semilinear elliptic problems. Indiana Univ. Math. J. 34: 591–606

    Article  MATH  MathSciNet  Google Scholar 

  15. Denkowski Z., Migorski S. and Papageorgiou N.S. (2003). An Introduction to Nonlinear Analysis: Theory. Kluwer/Plenum, New York

    Google Scholar 

  16. Denkowski Z., Migorski S. and Papageorgiou N.S. (2003). An Introduction to Nonlinear Analysis: Applications. Kluwer/Plenum, New York

    Google Scholar 

  17. Di Benedetto E. (1983). C 1,α local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7: 827–850

    Article  MathSciNet  Google Scholar 

  18. Drábek P., Kufner A. and Nicolosi F. (1997). Quasilinear Elliptic Equations with Degenerations and Singularities. Walter de Gruyter & Co., Berlin

    MATH  Google Scholar 

  19. García Azorero J. and Peral Alonso I. (1994). Some results about the existence of a second positive solution in a quasilinear critical problem. Indiana Univ. Math. J. 43: 941–957

    Article  MATH  MathSciNet  Google Scholar 

  20. García Azorero J.P., Peral Alonso I. and Manfredi J.J. (2000). Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations. Commun. Contemp. Math. 2: 385–404

    MATH  MathSciNet  Google Scholar 

  21. Gasiński L. and Papageorgiou N.S. (2006). Nonlinear Analysis. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  22. Godoy T., Gossez J.-P. and Paczka S. (2002). On the antimaximum principle for the p-Laplacian with indefinite weight. Nonlinear Anal. 51: 449–467

    Article  MATH  MathSciNet  Google Scholar 

  23. Guedda M. and Véron L. (1989). Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal. 13: 879–902

    Article  MATH  MathSciNet  Google Scholar 

  24. Guo Z. (1996). On the number of positive solutions for quasilinear elliptic eigenvalue problems. Nonlinear Anal. 27: 229–247

    Article  MATH  MathSciNet  Google Scholar 

  25. Hu S. and Papageorgiou N.S. (1995). Generalizations of Browder’s degree theory. Trans. Am. Math. Soc. 347: 233–259

    Article  MATH  MathSciNet  Google Scholar 

  26. Ladyzhenskaya O. and Uraltseva N. (1968). Linear and Quasilinear Elliptic Equations. Academic Press, New York

    MATH  Google Scholar 

  27. Li E. and Wang Z.Q. (2000). Mountain pass theorem in order intervals and multiple solutions for semilinear elliptic Dirichlet problems. J. Anal. Math. 81: 373–396

    MATH  MathSciNet  Google Scholar 

  28. Lieberman G. (1988). Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12: 1203–1219

    Article  MATH  MathSciNet  Google Scholar 

  29. Lions P.-L. (1982). On the existence of positive solutions of semilinear elliptic equations. SIAM Rev. 24: 441–467

    Article  MATH  MathSciNet  Google Scholar 

  30. Motreanu D. and Papageorgiou N.S. (2004). Multiple solutions for nonlinear elliptic equations at resonance with a nonsmooth potential. Nonlinear Anal. 56: 1211–1234

    Article  MathSciNet  Google Scholar 

  31. Ôtani M. (1988). Existence and nonexistence of nontrivial solutions of some nonlinear degenerate elliptic equations. J. Funct. Anal. 76: 140–159

    Article  MATH  MathSciNet  Google Scholar 

  32. Ricceri B. (2000). A general variational principle and some of its applications. J. Comput. Appl. Math. 113: 401–410

    Article  MATH  MathSciNet  Google Scholar 

  33. Tolksdorf P. (1984). Regularity for a more general class of nonlinear analysis elliptic equations. J. Differ. Equ. 51: 126–150

    Article  MATH  MathSciNet  Google Scholar 

  34. Vázquez J.L. (1984). A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12: 191–202

    Article  MATH  MathSciNet  Google Scholar 

  35. Zeidler E. (1990). Nonlinear functional analysis and its applications II. Nonlinear monotone operators. Springer, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Motreanu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motreanu, D., Motreanu, V.V. & Papageorgiou, N.S. A degree theoretic approach for multiple solutions of constant sign for nonlinear elliptic equations. manuscripta math. 124, 507–531 (2007). https://doi.org/10.1007/s00229-007-0127-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-007-0127-x

Mathematics Subject Classification (2000)

Navigation