Skip to main content
Log in

The equivariant homotopy type of G-ANR’s for compact group actions

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We prove that if G is a compact Hausdorff group then every G-ANR has the G-homotopy type of a G-CW complex. This is applied to extend the James–Segal G-homotopy equivalence theorem to the case of arbitrary compact group actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonyan S.A. (1987). Equivariant embeddings into G-AR’s. Glasnik Mat. 22(42): 503–533

    MathSciNet  Google Scholar 

  2. Antonyan, S.A.: Existence of a slice for arbitrary compact transformation groups (in Russian). Matematicheskie Zametki 56(5), 3–9 (1994). English translat.: Math. Notes 56(5–6), 1101–1104 (1994)

  3. Antonyan S.A. (2005). Orbit spaces and unions of equivariant absolute neighbourhood extensors. Topol. Appl. 146–147: 289–315

    Article  MathSciNet  Google Scholar 

  4. Antonyan S.A. (2000). The topology of the Banach–Mazur compactum. Fund. Math. 166(3): 209–232

    MATH  MathSciNet  Google Scholar 

  5. Antonyan S.A. (2003). West’s problem on equivariant hyperspaces and Banach–Mazur compacta. Trans. Am. Math. Soc. 355(8): 3379–3404

    Article  MATH  MathSciNet  Google Scholar 

  6. Antonyan S.A. (2005). Orbit spaces of proper equivariant absolute extensors. Topol. Appl. 153: 698–709

    Article  MATH  MathSciNet  Google Scholar 

  7. Antonyan, S.A.: G-ANR’s with homotopy trivial fixed point sets. Fund. Math. (submitted in 2005)

  8. Bredon, G.E.: Introduction to compact transformation groups. Academic, New York (1972)

  9. tom Dieck T. (1971). Partitions of unity in homotopy theory. Composit. Math. 23: 159–167

    MATH  MathSciNet  Google Scholar 

  10. tom Dieck, T.: Transformation groups. Walter de Gruyter (1987)

  11. Dold A. (1980). Lectures on Algebraic Topology. Springer, Heidelberg

    MATH  Google Scholar 

  12. Dugundji, J.: Topology. Allyn and Bacon (1966)

  13. Elfving, E.: The G-homotopy type of proper locally linear G-manifolds. Ann. Acad. Sci. Fenn., Math. Dissertationes 108 (1996)

  14. Elfving E. (2001). The G-homotopy type of proper locally linear G-manifolds. II. Manuscripta Math. 105: 235–251

    Article  MATH  MathSciNet  Google Scholar 

  15. Helgason, S.: Differential geometry, Lie groups and Symmetric spaces. Graduate Studies in Mathematics, vol 34. Am. Math. Soc., Providence (2001)

  16. Illman, S.: Equivariant singular homology and cohomology for actions of compact Lie groups. In: Proceedings of the Second Conference on Compact Transformation Groups (Univ. of Massachusetts, Amherst, 1971). Lecture Notes in Mathematics, vol 298, pp. 403–415. Springer, Heidelberg (1972)

  17. Illman S. (1972). Equivariant algebraic topology PhD Thesis. Princeton University, Princeton

  18. Illman S. (1990). Restricting the transformation group in equivariant CW complexes. Osaka J. Math. 27: 191–206

    MATH  MathSciNet  Google Scholar 

  19. Illman S. (2000). Existence and uniqueness of equivariant triangulations of smooth proper G-manifolds with some applications to equivariant Whitehead torsion. J. Reine Angew. Math. 524: 129–183

    MATH  MathSciNet  Google Scholar 

  20. James I.M. and Segal G.B. (1978). On equivariant homotopy type. Topology 17: 267–272

    Article  MATH  MathSciNet  Google Scholar 

  21. James, I.M., Segal, G.B.: On equivariant homotopy theory. In: Proceedings of the Topology Symposium (Univ. of Siegen, 1979). Lecture Notes in Mathematics, vol 788, pp. 316–330. Springer, Heidelberg (1980)

  22. Kwasik S. (1980). On the homotopy type of G-Manifolds and G-ANR’s. Bull. Acad. Polon. Sci. Ser. Sci. Math. 28(9–10): 509–515

    MATH  MathSciNet  Google Scholar 

  23. Kwasik S. (1981). On the equivariant homotopy type of G-ANR’s. Proc. Am. Math. Soc. 83(Nr. 1): 193–194

    Article  MATH  MathSciNet  Google Scholar 

  24. Mardesić S. and Segal J. (1982). Shape theory. North-Holland Publ. Comp., Amsterdam

    Google Scholar 

  25. Matumoto T. (1971). On G-CW complexes and a theorem of J.H.C. Whitehead. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 18: 363–374

    MATH  MathSciNet  Google Scholar 

  26. Matumoto T. (1971). Equivariant K-theory and Fredholm operators. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 18: 109–125

    MATH  Google Scholar 

  27. May, J.P.: Simplicial objects in algebraic topology. D. van Nostrand Company (1967)

  28. May, J.P.: A Concise Course In Algebraic Topology. Chicago Lectures in Mathematics. The University of Chicago Press, Chicago (1999)

  29. Milnor J. (1959). On spaces having the homotopy type of a CW complex. Trans. Am. Math. Soc. 90: 272–280

    Article  MathSciNet  Google Scholar 

  30. Murayama M. (1983). On G-ANR’s and their G-homotopy types. Osaka J. Math. 20: 479–512

    MATH  MathSciNet  Google Scholar 

  31. Palais, R.S.: The classification of G-spaces. Mem. Am. Math. Soc. 36 (1960)

  32. Pontryagin, L.S.: Selected works, vol 2. Topological groups, Classics of Soviet Math. Gordon & Breach Sci. Publ., New York (1986)

  33. Segal G. (1968). Classifying spaces and spectral sequences. Publ. Math. I.H.E.S. 34: 105–112

    MATH  Google Scholar 

  34. Spanier E.H. (1966). Algebraic Topology. McGraw-Hill, New York

    MATH  Google Scholar 

  35. Waner S. (1980). Equivariant homotopy theory and Milnor’s theorem. Trans. Am. Math. Soc. 258: 351–368

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Elfving.

Additional information

The first author was supported in part by grant U42563-F from CONACYT (Mexico).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonyan, S.A., Elfving, E. The equivariant homotopy type of G-ANR’s for compact group actions. manuscripta math. 124, 275–297 (2007). https://doi.org/10.1007/s00229-007-0108-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-007-0108-0

Mathematics Subject Classification (2000)

Navigation