Skip to main content
Log in

Codimension two singularities for representations of extended Dynkin quivers

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Let M and N be two representations of an extended Dynkin quiver such that the orbit \({\mathcal{O}}_N\) of N is contained in the orbit closure \(\overline{{\mathcal{O}}}_M\) and has codimension two. We show that the pointed variety \((\overline{{\mathcal{O}}}_M, N)\) is smoothly equivalent to a simple surface singularity of type A n , or to the cone over a rational normal curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bender J. and Bongartz K. (2003). Minimal singularities in orbit closures of matrix pencils. Linear Algebra Appl. 365: 13–24

    Article  MATH  MathSciNet  Google Scholar 

  2. Bongartz K. (1991). A geometric version of the Morita equivalence. J. Algebra 139: 159–171

    Article  MATH  MathSciNet  Google Scholar 

  3. Bongartz K. (1994). Minimal singularities for representations of Dynkin quivers. Comment. Math. Helv. 63: 575–611

    Article  MathSciNet  Google Scholar 

  4. Bongartz K. (1995). Degenerations for representations of tame quivers. Ann. Sci. École Norm. Sup. 28: 647–668

    MATH  MathSciNet  Google Scholar 

  5. Bongartz K. (1996). On degenerations and extensions of finite dimensional modules. Adv. Math. 121: 245–287

    Article  MATH  MathSciNet  Google Scholar 

  6. Bongartz K. and Fritzsche T. (2003). On minimal disjoint degenerations for preprojective representations of quivers. Math. Comput. 72: 2013–2042

    Article  MATH  MathSciNet  Google Scholar 

  7. Hesselink W. (1976). Singularities in the nilpotent scheme of a classical group. Trans. Am. Math. Soc. 222: 1–32

    Article  MATH  MathSciNet  Google Scholar 

  8. Kraft H. and Procesi C. (1981). Minimal singularities in GL n . Invent. Math. 62: 503–515

    Article  MATH  MathSciNet  Google Scholar 

  9. Riedtmann Ch. (1986). Degenerations for representations of quivers with relations. Ann. Sci. École Norm. Sup. 4: 275–301

    MathSciNet  Google Scholar 

  10. Ringel, C.M.: Tame algebras and integral quadratic forms. In: Lecture Notes in Mathematics, vol 1099. Springer, Heidelberg (1984)

  11. Zwara G. (1998). Degenerations for representations of extendend Dynkin quivers. Comment Math. Helv. 73: 71–88

    Article  MATH  MathSciNet  Google Scholar 

  12. Zwara G. (2000). Degenerations of finite dimensional modules are given by extensions. Compos. Math. 121: 205–218

    Article  MATH  MathSciNet  Google Scholar 

  13. Zwara G. (2002). Smooth morphisms of module schemes. Proc. Lond. Math. Soc. 84: 539–558

    Article  MATH  MathSciNet  Google Scholar 

  14. Zwara G. (2002). Unibranch orbit closures in module varieties. Ann. Sci. École Norm. Sup. 35: 877–895

    MATH  MathSciNet  Google Scholar 

  15. Zwara G. (2005). Regularity in codimension one of orbit closures in module varieties. J. Algebra 283: 821–848

    Article  MATH  MathSciNet  Google Scholar 

  16. Zwara G. (2005). Orbit closures for representations of Dynkin quivers are regular in codimension two. J. Math. Soc. Jpn 57: 859–880

    MATH  MathSciNet  Google Scholar 

  17. Zwara G. (2006). Singularities of orbit closures in module varieties and cones over rational normal curves. J. Lond. Math. Soc. 74: 623–638

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Zwara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zwara, G. Codimension two singularities for representations of extended Dynkin quivers. manuscripta math. 123, 237–249 (2007). https://doi.org/10.1007/s00229-007-0093-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-007-0093-3

Mathematics Subject Classification (2000)

Navigation