Skip to main content
Log in

Motivic Serre invariants of curves

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

In this article, we generalize the theory of motivic integration on formal schemes topologically of finite type and the notion of motivic Serre invariant, to a relative point of view. We compute the relative motivic Serre invariant for curves defined over the field of fractions of a complete discrete valuation ring R of equicharacteristic zero. One aim of this study is to understand the behavior of motivic Serre invariants under ramified extension of the ring R. Thanks to our constructions, we obtain, in particular, an expression for the generating power series, whose coefficients are the motivic Serre invariant associated to a curve, computed on a tower of ramified extensions of R. We give an interpretation of this series in terms of the motivic zeta function of Denef and Loeser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbes, A.: Réduction semi-stable des courbes. In: Bost, J.-B. et~al. (ed.) Courbes semi-stables et groupe fondamental en géométrie algébrique. Actes des conférences données au CIRM à Luminy, France, 30 novembre au 4 décembre 1998. Prog. Math. 187, 59–110 (2000)

  2. Bosch S. and Lütkebohmert W. (1990). Formal and rigid geometry I: Rigid spaces. Math. Ann. 295(2): 291–317

    Google Scholar 

  3. Bosch S. and Lütkebohmert W. (1993). Formal and rigid geometry II: Flattening techniques. Math. Ann. 296(3): 403–429

    Article  MATH  MathSciNet  Google Scholar 

  4. Bosch S., Raynaud M., Lütkebohmert and W. (1995). Formal and rigid geometry III: The relative maximum principle. Math. Ann. 302(1): 1–29

    Article  MATH  MathSciNet  Google Scholar 

  5. Bosch, S., Lütkebohmert, W., Raynaud, M.: Néron models. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 21 (1990)

  6. Bosch S. and Schlöter K. (1995). Néron models in the setting of formal and rigid geometry. Math. Ann. 301(2): 339–362

    Article  MATH  MathSciNet  Google Scholar 

  7. Denef J. and Loeser F. (1998). Motivic Igusa zeta functions. J. Algebraic Geom. 7: 505–537

    MATH  MathSciNet  Google Scholar 

  8. Denef J. and Loeser F. (1999). Germs of arcs on singular algebraic varieties and motivic integration. Invent. Math. 135(1): 201–232

    Article  MATH  MathSciNet  Google Scholar 

  9. Denef J. and Loeser F. (2002). Lefschetz numbers of iterates of the monodromy and truncated arcs. Topology 41(5): 1031–1040

    Article  MATH  MathSciNet  Google Scholar 

  10. Grothendieck A. and Dieudonné J. (1960). Éléments de géométrie algébrique, I. Publ. Math. Inst. Hautes Étud. Sci. 4: 5–228

    Google Scholar 

  11. Grothendieck A. and Dieudonné J. (1961). Éléments de géométrie algébrique, III. Publ. Math. Inst. Hautes Étud. Sci. 11: 5–167

    Google Scholar 

  12. Fujiwara K. (1995). Theory of tubular neighborhood in étale topology. Duke Math. J. 80(1): 15–57

    Article  MATH  MathSciNet  Google Scholar 

  13. Greenberg M.J. (1966). Rational points in Henselian discrete valuation rings. Inst. Hautes Études Sci. Publ. Math. 31: 59–64

    Google Scholar 

  14. Greenberg M.J. (1961). Schemata over local rings. Ann. Math. 73(2): 624–648

    Google Scholar 

  15. Hironaka H. (1964). Resolution of singularities of an algebraic variety over a field of characteristic zero, I, II.. Ann. Math. 79(2): 109–326

    Article  MathSciNet  Google Scholar 

  16. Liu Q. (2002). Algebraic geometry and arithmetic curves. Oxford Graduate Texts in Mathematics, vol. 6. Oxford University Press, Oxford

    Google Scholar 

  17. Loeser F. and Sebag J. (2003). Motivic integration on smooth rigid varieties and invariants of degenerations. Duke Math. J. 119: 315–344

    Article  MATH  MathSciNet  Google Scholar 

  18. Nicaise J. and Sebag J. (2005). Invariant de Serre et fibre de Milnor analytique. C. R. Acad. Sci. Paris, Ser. I 341(1): 21–24

    MATH  MathSciNet  Google Scholar 

  19. Nicaise, J., Sebag, J.: Rigid geometry and the monodromy conjecture. In: The Conference Proceedings of Singularités. CIRM, Luminy, 24 January–25 February (2005) (in press)

  20. Nicaise, J., Sebag, J.: Motivic Serre invariants, ramification, and the analytic Milnor fiber. Invent. Math. (in press)

  21. Schappacher, N.: Some remarks on a theorem of M.J. Greenberg. Proceedings of the Queen’s Number Theory Conference, (Kingston, Ont., 1979), pp. 101–113. Queen’s Papers in Pure and Appl. Math. 54, Queen’s Univ. (1980)

  22. Sebag J. (2004). Intégration motivique sur les schémas formels. Bull. Soc. Math. France 132(1): 1–54

    MATH  MathSciNet  Google Scholar 

  23. Serre J.-P. (1965). Classification des variétés analytiques p-adiques compactes. Topology 3: 409–412

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Sebag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicaise, J., Sebag, J. Motivic Serre invariants of curves. manuscripta math. 123, 105–132 (2007). https://doi.org/10.1007/s00229-007-0088-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-007-0088-0

Mathematics Subject Classification (2000)

Navigation