Skip to main content
Log in

Frobenius rational loop algebra

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Recently R. Cohen and V. Godin have proved that the loop homology \(H_{\ast+m} (LM ; {\varvec k})\) of a closed oriented m dimensional manifold M with coefficients in a field k has the structure of a unital Frobenius algebra without counit. When the characteristic of k is zero we describe explicitly the dual of the coproduct \(H^{\ast} (LM ; {\varvec k})^{\otimes 2} \to H^{\ast+m} (LM ; {\varvec k})\) and prove that it respects the Hodge decomposition of \(H^{\ast}(LM ; {\varvec k})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrams L. (1996). Two dimensional topological quantum field theory and Frobenius algebras. J. Knot Theory Ramif. 5: 569–587

    Article  MATH  MathSciNet  Google Scholar 

  2. Abrams, L.: Modules, comodules and cotensor products over Frobenius algebras. Home page-Preprint

  3. Bredon G.E. (1993). Topology and Geometry. Graduate Texts in Mathematics, vol. 139. Springer, Heidelberg

    Google Scholar 

  4. Burghelea D., Vigué M. (1985). A model for cyclic homology and algebraic K-theory for 1-connected topological space. J. of differential Geometry 22: 243–253

    MATH  Google Scholar 

  5. Chas, M., Sullivan, D.: String topology. ArXiv:math.GT/9911159

  6. Chas, M., Sullivan, D.: Closed String Operators in topology leading to Lie bialgebra and higher string algebra. ArXiv:math.GT/9911159

  7. Chataur, D.: A bordism approach to string topology. Int. Math. Res. Not. 46, 2829–2875 IMRN (2005)

    Google Scholar 

  8. Cohen, R.L., Godin, V.: A Polarized view of string topology. Topology, geometry and quantum field theory, London Math. Soc. Lecture Notes, vol. 308. Cambridge University Press, Cambridge 127–154 (2004)

  9. Cohen, R.L., Jones, J.D.S., Yan, J: The loop homology algebra of spheres and projective spaces. In: Categorical Decomposition Techniques in Algebraic Topology. Progress in Mathematics, vol. 215. Birkhäuser-Verlag (2004)

  10. Deligne P., Griffiths J., Morgan J., Sullivan D. (1975). Real homotopy theory of Kähler manifolds. Invent. Math. 29: 245–274

    Article  MATH  MathSciNet  Google Scholar 

  11. Felix Y., Halperin S., Thomas J.-C. (1988). Gorenstein spaces. Adv. Math. 71: 92–112

    Article  MATH  MathSciNet  Google Scholar 

  12. Félix, Y., Halperin, S., Thomas, J.-C.: Differential graded algebras in topology Handbook of Algebraic Topology, chap. 16. In: James, I.M.(ed.) North-Holland, Amsterdam (1995)

  13. Felix Y., Halperin S., Thomas J.-C. (2000). Rational homotopy theory. Graduate Texts in Mathematics, vol. 205. Springer, Heidelberg

    Google Scholar 

  14. Felix Y., Thomas J.-C., Vigué-Poirrier M. (2007). Rational String homology. J. Eur. Math. Soc. 9: 123–156

    MATH  Google Scholar 

  15. Halperin S., Stasheff J.D. (1979). Obstructions to homotopy equivalences. Adv. Math. 32: 233–279

    Article  MATH  MathSciNet  Google Scholar 

  16. Milnor J., Stasheff J.D. (1974). Characteristic classes. Annals of Math. Studies, vol. 76. Princeton University Press, Princeton

    Google Scholar 

  17. Lang, S.: Differential and Riemannian Manifolds. Third edition. Graduate text in mathematics, 160 Springer, New York 1995

  18. Stacey, A.: The differential Topology of Loop Spaces. ArXiv:math.DG/0510097

  19. Sullivan D. (1977). Infinitesimal computations in topology. Inst. Hautes Etudes Sci. Publ. Math. 47: 269–331

    MATH  MathSciNet  Google Scholar 

  20. Sullivan, D.: Open and closed string field theory interpreted in classical algebraic topology. ArXiv:math.QA/0302332 v1

  21. Vigué-Poirrier M. (1991). Décomposition de l’homologie des algèbres différentielles graduées commutatives. K-Theory 4: 399–410

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Chataur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chataur, D., Thomas, JC. Frobenius rational loop algebra. manuscripta math. 122, 305–319 (2007). https://doi.org/10.1007/s00229-006-0069-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-006-0069-8

Mathematics Subject Classification (2000)

Navigation