Skip to main content
Log in

Properties of a scalar curvature invariant depending on two planes

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Based on Schouten’s interpretation of the Riemann–Christoffel curvature tensor R, a geometrical meaning for the tensor R·R is presented. It follows that the condition of semi-symmetry, i.e. R·R = 0, can be interpreted as the invariance of the sectional curvature of every plane after parallel transport around an infinitesimal parallelogram. Using the tensor R· R, and in analogy with the definition of the sectional curvature K(p,π) of a plane π, a scalar curvature invariant L(p,π, \({\overline{\pi}}\)) is constructed which in general depends on two planes π and \({\overline{\pi}}\) at the same point p. This invariant can be geometrically interpreted in terms of the parallelogramoïds of Levi–Civita and it is shown that it completely determines the tensor R· R. Further it is demonstrated that the isotropy of this new scalar curvature invariant L(p,π, \({\overline{\pi}}\)) with respect to both the planes π and \({\overline{\pi}}\) amounts to the Riemannian manifold to be pseudo-symmetric in the sense of Deszcz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belkhelfa, M., Deszcz, R., Glogowska, M., Hotloś, M., Kowalczyk, D., Verstraelen, L.: On some type of curvature conditions. Banach Center Publ., vol. 57, Inst. Math. Polish Acad. Sci., pp. 179–194 (2002)

  2. Cartan É. (1963) Leçons sur la géométrie des espaces de Riemann. Gauthier-Villars, Paris

    Google Scholar 

  3. Defever F., Deszcz R. (1991) A note on geodesic mappings of pseudosymmetric Riemannian manifolds. Colloq. Math. 62, 313–319

    MathSciNet  MATH  Google Scholar 

  4. Defever F., Deszcz R., Verstraelen L., Vrancken L. (1994) On pseudosymmetric space-times. J. Math. Phys. 35:5908–5921

    Article  MathSciNet  MATH  Google Scholar 

  5. Deszcz R. (1987) Notes on totally umbilical submanifolds. In: Morvan J.M., Verstraelen L. (eds) Geometry and Topology of Submanifolds, vol I. World Scientific, Singapore, pp. 89–97

    Google Scholar 

  6. Deszcz R. (1992) On pseudosymmetric spaces. Bull. Soc. Math. Belg. Sér. A 44, 1–34

    MathSciNet  MATH  Google Scholar 

  7. Deszcz R., Haesen S., Verstraelen L. (2004) Classification of space-times satisfying some pseudo-symmetry type conditions. Soochow J. Math. 30, 339–349

    MathSciNet  MATH  Google Scholar 

  8. Deszcz R., Verstraelen L., Vrancken L. (1991) The symmetry of warped product space-times. Gen. Relat. Grav. 23, 671–681

    Article  MathSciNet  MATH  Google Scholar 

  9. Eisenhart L. (1997) Riemannian Geometry. Princeton University Press, Princeton

    Google Scholar 

  10. Graves L., Nomizu K. (1978) On sectional curvature of indefinite metrics. Math. Ann. 232, 267–272

    Article  MathSciNet  MATH  Google Scholar 

  11. Haesen S., Verstraelen L. (2004) Classification of the pseudosymmetric space-times. J. Math. Phys. 45:2343–2346

    Article  MathSciNet  MATH  Google Scholar 

  12. Kowalski, O., Sekizawa, M.: Pseudo-symmetric spaces of constant type in dimension three – elliptic spaces. Rendiconti di Matematica, Serie VII, vol. 17, Roma, pp. 477–512 (1997)

  13. Levy H. (1926) Tensors determined by a hypersurface in Riemannian space. Trans. Am. Math. Soc. 28, 671–694

    Article  MATH  Google Scholar 

  14. Riemann G.F.B. (1975) Über die Hypothesen, welche der Geometrie zu Grunde liegen, English translation. In: Spivak M. (eds) A comprehensive introduction to differential geometry, vol II. Publish or Perish, Houston

    Google Scholar 

  15. Szabó Z. (1982) Structure theorems on Riemannian spaces satisfying R(X,YR = 0. I. The local version. J. Diff. Geom. 17, 531–582

    MATH  Google Scholar 

  16. Szabó Z. (1985) Structure theorems on Riemannian spaces satisfying R(X,YR = 0. I. The global version. Geom. Dedicata 19, 65–108

    Article  MathSciNet  MATH  Google Scholar 

  17. Tachibana S. (1974) A theorem on Riemannian manifolds of positive curvature operator. Proc. Jpn. Acad. Ser. Math. Sci. 50, 301–302

    Article  MathSciNet  MATH  Google Scholar 

  18. Venzi P. (1978) On geodesic mappings in Riemannian or pseudo-Riemannian manifolds. Tensor, N.S. 32, 193–198

    MathSciNet  MATH  Google Scholar 

  19. Verstraelen L. (1994) Comments on pseudo-symmetry in the sense of Ryszard Deszcz. In: Dillen F., et al. (eds) Geometry and Topology of Submanifolds, vol. VI. World Scientific Publishing, Singapore, pp. 199–209

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Haesen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haesen, S., Verstraelen, L. Properties of a scalar curvature invariant depending on two planes. manuscripta math. 122, 59–72 (2007). https://doi.org/10.1007/s00229-006-0056-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-006-0056-0

Mathematics Subject Classification (2000)

Navigation