Skip to main content
Log in

On closures of cycle spaces of flag domains

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Open orbits D of noncompact real forms G 0 acting on flag manifolds Z = G/Q of their semisimple complexifications G are considered. Given D and a maximal compact subgroup K 0 of G 0, there is a unique complex K 0–orbit in D which is regarded as a point \(C_{0}\in \mathcal {C}_q(D)\) in the space of q-dimensional cycles in D. The group theoretical cycle space \(\mathcal M_{D}\) is defined to be the connected component containing C 0 of the intersection of the G–orbit G(C 0) with \(\mathcal {C}_q(D)\). The main result of the present article is that \(\mathcal {M}_D\) is closed in \(\mathcal {C}_q(D)\). This follows from an analysis of the closure of the universal domain \(\mathcal {U}\) in any G-equivariant compactification of the affine symmetric space G/K, where K is the complexification of K 0 in G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barchini L. (2003): Stein extensions of real symmetric spaces and the geometry of the flag manifold. Math. Ann. 326, 331–346

    Article  MATH  MathSciNet  Google Scholar 

  2. Borel A. (1991): Linear algebaic groups, 2nd edn. In: Graduate Texts in Mathematics, vol. 126, Springer, Berlin Heidelberg New York

  3. Burns D., Halverscheid S., Hind R. (2003): The geometry of Grauert tubes and complexification of symmetric spaces. Duke J. Math. 118, 465–491

    Article  MATH  MathSciNet  Google Scholar 

  4. DeConcini, C., Procesi, C.: Complete symmetric varieties. In: Invariant Theory, Conference Proceedings, Montecatini 1982, Springer LNM 996, pp. 1–44 (1983)

  5. Fels G. Huckleberry A. (2005): Characterization of cycle domains via Kobayashi hyperbolicity. Bull. Soc. Math. de France 133, 121–144,(AG/0204341)

    Google Scholar 

  6. Fels, G., Huckleberry, A. Wolf, J.A.: Cycle Spaces of Flag Domains: A Complex Geometric Viewpoint. Progress in Mathematics, vol. 245. Springer/Birkhäuser, Boston (2005)

  7. Heinzner, P., Schwarz, G.W.: Cartan decomposition of the moment map (CV/0502515)

  8. Heinzner, P. Stötzel, H.: Semistable points with respect to real forms (CV/0511109)

  9. Huckleberry A. (2002): On certain domains in cycle spaces of flag manifolds. Math. Ann. 323, 797–810

    Article  MATH  MathSciNet  Google Scholar 

  10. Huckleberry A., Wolf J.A. (2003): Schubert varieties and cycle spaces. Duke Math. J. 120, 229–249,(AG/0204033)

    Article  MATH  MathSciNet  Google Scholar 

  11. Wells R.O., Wolf J.A. (1977): Poincaré series and automorphic cohomology on flag domains. Ann. of Math. 105, 397–448

    Article  MATH  MathSciNet  Google Scholar 

  12. Wolf J.A. (1969): The action of a real semisimple Lie group on a complex manifold, I: orbit structure and holomorphic arc components. Bull. Am. Math. Soc. 75, 1121–1237

    Article  MATH  Google Scholar 

  13. Wolf J.A. (1992): The Stein condition for cycle spaces of open orbits on complex flag manifolds. Ann. Math. 136, 541–555

    Article  MATH  Google Scholar 

  14. Wolf J.A. Zierau R. (2000): Linear cycles spaces in flag domains, Math. Ann. 316, 529–545

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Huckleberry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, J., Huckleberry, A. On closures of cycle spaces of flag domains. manuscripta math. 121, 317–327 (2006). https://doi.org/10.1007/s00229-006-0039-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-006-0039-1

Keywords

Navigation