Skip to main content
Log in

On Birkhoff Theorems for Lagrangian invariant tori with closed orbits

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We show that a C 1 torus that is homologous to the zero section, invariant by the geodesic flow of a symmetric Finsler metric in T 2, and possesses closed orbits is a graph of the canonical projection. This result, together with the result obtained by Bialy in 1989 for continuous invariant tori without closed orbits of symmetric Finsler metrics in T 2, shows that the second Birkhoff Theorem holds for C 1 Lagrangian invariant tori of symmetric Finsler metrics in the two torus. We also study the first Birkhoff Theorem for continuous invariant tori of Finsler metrics in T 2 and give some sufficient conditions for a continuous minimizing torus with closed orbits to be a graph of the canonical projection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V. I.: Mathematical methods of classical mechanics. Berlin, Heidelberg, New York: Springer-Verlag 1978

  2. Arnold, V. I.: Topological invariants of plane curves and caustics. University Lecture Series, vol. 5, Amer. Math. Soc. Providence, RI, 1984 pps

  3. Bangert, V.: Mather sets for twist maps and geodesic on tori. In: Kirchgraber, U., Walther, H.O. (eds) Dynamics Reported. Vol. 1, B. G. Teubner, J. Wiley, 1–56, 1988

  4. Bialy, M., Polterovich, L.: Geodesic flows on the two dimensional torus and phase transitions ``commensurability-noncommensurability''. Funk. Anal. Appl. 20, 223–226 (1986)

    Article  Google Scholar 

  5. Bialy, M.: Aubry-Mather sets and Birkhoff's theorem for geodesic flows on the two dimensional torus. Communications in Math. Physics 126, 13–24 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bialy, M., Polterovich, L.: Lagrangian singularities of invariant tori of Hamiltonian systems with two degrees of freedom. Invent math 97, 291–303 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bialy, M., Polterovich, L.: Hamiltonian systems, Lagrangian tori and Birkhoff's theorem. Math. Ann. 292, 619–627 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Conley, C.: Isolated invariant sets and Morse index. Regional Conference Series in Mathematics, N. 38, American Mathematical Society, Providence, Rhode Island (1978). ISBN 0-8218-1688-8

  9. Contreras, G., Iturriaga, R.: Convex Hamiltonians without conjugate points. Ergod. Th. Dyn. Sys. 19, 901–952 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Contreras, G., Iturriaga, R., Paternain, G., Paternain, M.: Lagrangian graphs, minimizing measures, and Mañé's critical values. Geom. Funct. Anal. 8 (5), 788–809 (1998)

    Article  MathSciNet  Google Scholar 

  11. Dias Carneiro, M., Ruggiero, R.: On variational and topological properties of C 1 invariant Lagrangian tori. Ergod. Th. and Dyn. Sys. 24, (2004)

  12. Foulon, P.: Estimations de l'entropie des sistèmes lagrangians sans points conjugués. Annales de l'Institut Henri Poincaré 57, 117–146 (1992)

    MATH  MathSciNet  Google Scholar 

  13. Hedlund, G.: Geodesics on a two dimensional Riemannian manifolds with periodic coefficients. Annals of Math. 33, 719–739 (1932)

    Article  MATH  MathSciNet  Google Scholar 

  14. Herman, M. R.: Inégalités a priori pour des tores Lagrangiens invariants par des difféomorphismes symplectiques. Publ. Math. IHES 70, 47–101 (1989)

    MATH  MathSciNet  Google Scholar 

  15. McDuff, D., Salamon, D.: Introduction to Symplectic Topology. Oxford: Claredon Press 1995

  16. Mañé, R.: On a theorem of Klingenberg. Dynamical systems and bifurcation theory. M. Camacho, M. Pacifico and F. Takens editors, Pitman research notes in mathematics. 160, 319–345 (1987)

    MATH  Google Scholar 

  17. Mather, J.: Action minimizing measures for positive definite Lagrangian systems. Math. Z. 207 (2), 169–207 (1991)

    MathSciNet  Google Scholar 

  18. Morse, J. M.: A fundamental class of geodesics on any closed surface of genus greater than one. Trans. Amer. Math. Soc. 26 (1), 25–60 (1924)

    Article  MathSciNet  Google Scholar 

  19. Paternain, G.: Geodesic flows. Progress in Mathematics 180, Birhäuser, 1999

  20. Polterovich, L.: Monotone Lagrange submanifolds of linear spaces and the Maslov class in cotangent bundles. Math. Z. 207, 217–222 (1991)

    MATH  MathSciNet  Google Scholar 

  21. Polterovich, L.: The second Birkhoff's Theorem for optical Hamiltonian systems. Proc. Amer. math. Soc. 113, 513–516 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  22. Viterbo, C.: A new obstruction to embedding Lagrangian tori. Invent. Math. 100, 301–320 (1990)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael O. Ruggiero.

Additional information

Partially supported by CNPq, FAPERJ, TWAS

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carneiro, M., Ruggiero, R. On Birkhoff Theorems for Lagrangian invariant tori with closed orbits. manuscripta math. 119, 411–432 (2006). https://doi.org/10.1007/s00229-005-0619-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-005-0619-5

Keywords

Navigation