Skip to main content
Log in

On the Steinberg module of Chevalley groups

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract.

For a simple Chevalley group G an explicit version of the Solomon-Tits theorem is proved by describing the generators of the kernel of the map Z[G(K)]→S K , where K is any field and where S K is the Steinberg module of the group G(K). As a corollary it is shown that if is a Euclidean domain whose fraction field is K, then S K is cyclic as a G() module when G is either a classical group or an exceptional group of type E6, or E7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ash, A.: A note on minimal modular symbols. Proc. Amer. Math. Soc. 96(3), 394–396 (1986)

    Google Scholar 

  2. Ash, A., Gunnells, P.E., McConnell, M.: Cohomology of congruence subgroups of SL4(ℤ). J. Number Theory 94(1), 181–212 (2002)

    Google Scholar 

  3. Ash, A., McConnell, M.: Experimental indications of three-dimensional Galois representations from the cohomology of SL(3,Z). Experiment. Math. 1(3), 209–223 (1992)

    Google Scholar 

  4. Ash, A., Pinch, R., Taylor, R.: An extension of Q attached to a nonselfdual automorphic form on GL(3). Math. Ann. 291(4), 753–766 (1991)

    Google Scholar 

  5. Ash, A., Rudolph, L.: The modular symbol and continued fractions in higher dimensions. Invent. Math. 55(3), 241–250 (1979)

    Google Scholar 

  6. R. Bieri and B. Eckmann, Groups with homological duality generalizing Poincare duality. Invent. Math. 20, 103–124 (1973)

    Google Scholar 

  7. Borel, A., Serre, J-P.: Corners and arithmetic groups. Avec un appendice: Arrondissement des variétés à coins, par A. Douady et L. Hérault. Comment. Math. Helv. 48, 436–491 (1973)

    Google Scholar 

  8. Brown, K.S.: Cohomology of groups. Graduate Texts in Mathematics. Springer- Verlag, New York-Berlin, 87, x+306, (1982)

  9. Bruhat, F., Tits, J.: Groupes reductifs sur un corps local. Inst. Hautes Etudes Sci. Publ. Math. No. 41 , 5–251 (1972)

    Google Scholar 

  10. Carter, R.W.: Simple groups of Lie type. Pure and Applied Mathematics. John Wiley & Sons, London-New York-Sydney, 28, viii+331, (1972)

  11. Chevalley, C.: Sur certains groupes simples. Tohoku Math. J. 7(2), 14–66 (1955)

    Google Scholar 

  12. Séminaire C. Chevalley, 1956–1958. Classification des groupes de Lie algébriques, Secrétariat Math., 11 rue Pierre Curie, Paris, (1958)

  13. Clark, D.A., Murty, R.M.: The Euclidean algorithm for Galois extensions of Q. J. Reine Angew. Math. 459, 151–162 (1995)

    Google Scholar 

  14. Gunnells, P.E.: Modular symbols for Q-rank one groups and Voronoi reduction. J. Number Theory 75(2), 198–219 (1999)

    Google Scholar 

  15. Gunnells, P.E.: Symplectic modular symbols. Duke Math. J. 102(2), 329–350 (2000)

    Google Scholar 

  16. Gunnells, P.E.: Computing Hecke eigenvalues below the cohomological dimension. Experiment. Math. 9(3), 351–367 (2000)

    Google Scholar 

  17. Gunnells, P.E.: Finiteness of minimal modular symbols for SL n . J. Number Theory 82(1), 134–139 (2000)

    Google Scholar 

  18. Gunnells, P.E., McConnell, M.: Hecke operators and -groups associated to self-adjoint homogeneous cones. J. Number Theory 100(1), 46–71 (2003)

    Google Scholar 

  19. Iwahori, N., Matsumoto, H.: On some Bruhat decomposition and the structure of the Hecke rings of -adic Chevalley groups. Inst. Hautes Etudes Sci. Publ. Math. No. 25, 5–48 (1965)

    Google Scholar 

  20. Humphreys, J.E.: Introduction to Lie algebras and representation theory, Springer, New York, (1978)

  21. Kostant, B.: Groups over Z, in Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., Providence, R.I., 90–98 (1966)

  22. Cohomology of arithmetic groups and automorphic forms (Luminy-Marseille, 1989), Edited by J.-P. Labesse and J. Schwermer. Lecture Notes in Math., 1447, Springer, Berlin, (1990)

  23. Lee, R., Szczarba, R.H.: On the homology of congruence subgroups and K3(Z). Proc. Nat. Acad. Sci. U.S.A. 72, 651–653 (1975)

    Google Scholar 

  24. Lee, R., Szczarba, R.H.: On the homology and cohomology of congruence subgroups. Invent. Math. 33 (1), 15–53 (1976)

    Google Scholar 

  25. Lee, R., Szczarba, R.H.: The group K3(Z) is cyclic of order forty-eight. Ann. of Math. (2) 104(1), 31–60 (1976)

  26. Lee, R., Szczarba, R.H.: On the torsion in K4(Z) and K5(Z). Duke Math. J. 45(1), 101–129 (1978)

    Google Scholar 

  27. Manin, Ju.I.: Parabolic points and zeta functions of modular curves. Izv. Akad. Nauk SSSR Ser. Mat. 36, 19–66 (1972)

    Google Scholar 

  28. Ono, T.: Sur les groupes de Chevalley. J. Math. Soc. Japan 10, 307–313 (1958)

    Google Scholar 

  29. Reeder, M.: Modular symbols and the Steinberg representation. In [22] 287–302

  30. Reeder, M.: The Steinberg module and the cohomology of arithmetic groups. J. Algebra 141(2), 287–315 (1991)

    Google Scholar 

  31. Richardson, R., Rohrle, G. Steinberg, R.: Parabolic subgroups with abelian unipotent radical. Invent. Math. 110(3), 649–671 (1992)

    Google Scholar 

  32. Solomon, L.: The Steinberg character of a finite group with BN-pair. 1969 Theory of Finite Groups (Symposium, Harvard Univ., Cambridge, Mass., 1968) Benjamin, New York, 213–221

  33. Schwermer, J.: Cohomology of arithmetic groups, automorphic forms and L-functions. In [22], 1–29

  34. Steinberg, Robert, Prime power representations of finite linear groups. Canad. J. Math. 8, 580–591 (1956)

    Google Scholar 

  35. Steinberg, R.: Lectures on Chevalley groups, Yale University, New Haven, Conn., (1968)

  36. Weinberger, P.J.: On Euclidean rings of algebraic integers. Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), Amer. Math. Soc., Providence, R. I., 321–332 (1973)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Árpád Tóth.

Additional information

Acknowledgement I would like to thank Matt Emerton, Özlem Imamoglu, Paul Gunnells for several helpful comments.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tóth, Á. On the Steinberg module of Chevalley groups. manuscripta math. 116, 277–295 (2005). https://doi.org/10.1007/s00229-004-0524-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-004-0524-3

Keywords

Navigation