Skip to main content
Log in

A lemma on the higher integrability of functions with applications to the regularity theory of two-dimensional generalized Newtonian fluids

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract.

In this paper we prove a lemma on the higher integrability of functions and discuss its applications to the regularity theory of two-dimensional generalized Newtonian fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, E., Mingione, G.: Regularity results for stationary electrorheological fluids. Arch. Rat. Mech. Anal. 164, 213–259 (2002)

    Article  Google Scholar 

  2. Adams, R.A.: Sobolev spaces. Academic Press, New York-San Francisco-London, 1975

  3. Apushkinskaya, D., Bildhauer, M., Fuchs, M.: Steady states of anisotropic generalized Newtonian fluids. To appear in J. Math. Fluid Mech.

  4. Bildhauer, M.: Convex variational problems. Linear, nearly linear and anisotropic growth conditions. Lecture Notes in Mathematics 1818, Springer, Berlin-Heidelberg-New York, 2003

  5. Bildhauer, M., Fuchs, M.: Variants of the Stokes Problem: the case of anisotropic potentials. J. Math. Fluid Mech. 5, 364–402 (2003)

    Article  Google Scholar 

  6. Bildhauer, M., Fuchs, M.: A regularity result for stationary electrorheological fluids in two dimensions. Math. Meth. Appl. Sciences 27, 1607–1617 (2004)

    Article  Google Scholar 

  7. Coscia, A., Mingione, G.: Hölder continuity of the gradient of p(x)-harmonic mappings. C. R. Acad. Sci. Paris Sr. I Math. 328 (4), 363–368 (1999)

    Google Scholar 

  8. Esposito, L., Leonetti, F., Mingione, G.: Regularity for minimizers of functionals with p-q growth. Nonlinear Diff. Equ. Appl. 6, 133–148 (1999)

    Article  Google Scholar 

  9. Eringen, A.C., Maugin, G.: Electrodynamics of continua. Vol I&II, Springer, New York, 1989

  10. Ettwein, F., Elektrorheologische Flüssigkeiten: Existenz starker Lösungen in zweidimensionalen Gebieten. Diplomarbeit, Universität Freiburg, 2002

  11. Ettwein, F., Růžička, M.: Existence of strong solutions for electrorheological fluids in two dimensions: steady Dirichlet problem. In: Geometric Analysis and Nonlinear Partial Differential Equations. By S. Hildebrandt and H. Karcher, Springer-Verlag, Berlin-Heidelberg-New York, 2003, pp. 591–602

  12. Faraco, D., Koskela, P., Zhong, X.: Mappings of finite distortion: the degree of regularity. Adv. Math. To appear

  13. Frehse, J.: Two dimensional variational problems with thin obstacles. Math. Z. 143, 279–288 (1975)

    Google Scholar 

  14. Frehse, J., Seregin, G.: Regularity for solutions of variational problems in the deformation theory of plasticity with logarithmic hardening. Proc. St. Petersburg Math. Soc. 5, 184–222 (1998) (in Russian). English translation: Transl. Am. Math. Soc, II, 193, 127–152 (1999)

    Google Scholar 

  15. Gehring, F.W.: The Lp-integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130, 265–277 (1973)

    Google Scholar 

  16. Giaquinta, M.: Multiple integrals in the Calculus of Variations and non-linear elliptic systems. Ann. of Math. Stud. 105, Princeton University Press, Princeton, NJ, 1983

  17. Gilbarg, D., Trudinger, N.: Elliptic partial differential equations of the second order. Second Edition, Springer-Verlag, Berlin-Heidelberg, 1983

  18. Hutter, K., van de Ven, A.A.F.: Field matter interactions in thermoelastic solids. Lecture Notes in Physics Vol. 88, Springer, Berlin, 1978

  19. Iwaniec, T.: The Gehring lemma, in P. Duren, J. Heinonen, B. Osgood and B. Palka, Quasiconformal Mappings and Analysis, Springer-Verlag, New-York, 1998

  20. Iwaniec, T., Martin, G.: Geometric function theory and nonlinear analysis. Oxford University Press, 2001

  21. Kauhanen, J., Koskela, P., Malý, J.: On functions with derivatives in a Lorentz spaces. Manuscripta Math. 100, 87–101 (1999)

    Article  Google Scholar 

  22. Lukaszewicz, G.: Micropolar fluids. Modeling and Simulation in Science, Engineering & Technology, Birkhäuser, Boston, 1999

  23. Pao, Y.H.: Electromagnetic forces in deformable continua. Mechanics Today (S. Nemat-Nasser, ed.) Vol. 4, Pergamon Press, 1978, pp. 209–306

  24. Rajagopal, K.R., Růžička, M.: Mathematical modeling of electrorheological fluids. Cont. Mech. Therm. 13, 59–78 (2001)

    Article  Google Scholar 

  25. Růžička, M.: Electrorheological fluids: modeling and mathematical theory. Lecture Notes in Mathematics Vol. 1748, Springer, Berlin-Heidelberg-New York, 2000

  26. Stein, E.: Singular integrals and differentiability properties of functions. Princeton University Press, Princeton, NJ, 1970

  27. Truesdell, C., Rajagopal, K.R.: An introduction to the mechanics of fluids. Modeling and Simulation in Science, Engineering & Technology, Birkhäuser, Boston, 2000

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bildhauer.

Additional information

Mathematics Subject Classification (2000): 76M30, 49N60, 35J50, 35Q30

Acknowledgement Part of this work was done when X.Z. visited the Department of Mathematics, Saarland University, Germany, in June of 2003. He would like to thank the institute for the hospitality. X.Z. was partially supported by the Academy of Finland, project 207288.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bildhauer, M., Fuchs, M. & Zhong, X. A lemma on the higher integrability of functions with applications to the regularity theory of two-dimensional generalized Newtonian fluids. manuscripta math. 116, 135–156 (2005). https://doi.org/10.1007/s00229-004-0523-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-004-0523-4

Keywords

Navigation