Skip to main content
Log in

Osserman manifolds of dimension 8

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract.

For a Riemannian manifold Mn with the curvature tensor R, the Jacobi operator R X is defined by R X Y=R(X,Y)X. The manifold Mn is called pointwise Osserman if, for every p ∈ Mn, the eigenvalues of the Jacobi operator R X do not depend of a unit vector X ∈ T p Mn, and is called globally Osserman if they do not depend of the point p either. R. Osserman conjectured that globally Osserman manifolds are flat or locally rank-one symmetric. This Conjecture is true for manifolds of dimension n≠8,16[14]. Here we prove the Osserman Conjecture and its pointwise version for 8-dimensional manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiah, M.F., Bott, R., Shapiro, A.: Clifford modules. Topology 3 suppl. 1, 3–38 (1964)

  2. Besse, A.L.: Manifolds all of whose geodesics are closed. Ergebnisse der Mathematik und ihrer Grenzgebiete, 93, Springer-Verlag, 1978

  3. Brown, R., Gray, A.: Riemannian manifolds with holonomy group Spin(9). Diff. Geom. in honor of K.Yano, Kinokuniya, Tokyo, 1972, pp. 41–59

  4. Chi, Q.-S.: A curvature characterization of certain locally rank-one symmetric spaces. J. Diff. Geom. 28, 187–202 (1988)

    MathSciNet  MATH  Google Scholar 

  5. García-Río, E., Kupeli, D.N., Vázguez-Lorenzo, R.: Osserman manifolds in Semi-Riemannian Geometry. Lecture Notes in Mathematics, 1777, Springer-Verlag, 2002

  6. Gilkey, P.: Manifolds whose curvature operator has constant eigenvalues at the basepoint. J. Geom. Anal. 4, 155–158 (1994)

    MathSciNet  MATH  Google Scholar 

  7. Gilkey, P., Swann, A., Vanhecke, L.: Isoperimetric geodesic spheres and a conjecture of Osserman concerning the Jacobi operator. Quart. J. Math. Oxford (2) 46, 299–320 (1995)

    Google Scholar 

  8. Husemoller, D.: Fiber bundles. Springer-Verlag, 1975

  9. Lawson, H.B., Michelsohn, M.-L.: Spin geometry. Princeton Univ. Press, 1989

  10. Levine, J.: Imbedding and immersion of real projective spaces. Proc. Amer. Math. Soc. 14, 801–803 (1963)

    MATH  Google Scholar 

  11. Nagata, M.: A remark on the unique factorization theorem. J. Math. Soc. Japan 9, 143–145 (1957)

    MathSciNet  MATH  Google Scholar 

  12. Nikolayevsky, Y.: Osserman manifolds and Clifford structures. Houston J. Math. 29, 59–75 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Nikolayevsky, Y.: Two theorems on Osserman manifolds. Diff. Geom. Appl. 18, 239–253 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nikolayevsky, Y.: Osserman Conjecture in dimension n ≠ 8, 16. Preprint, http://au.arxiv.org/abs/math.DG/0204258. Mat. Annalen, to appear

  15. Olszak, Z.: On the existence of generalized space forms. Israel J. Math. 65, 214–218 (1989)

    MathSciNet  MATH  Google Scholar 

  16. Osserman, R.: Curvature in the eighties. Amer. Math. Monthly 97, 731–756 (1990)

    MathSciNet  MATH  Google Scholar 

  17. Pfister, A.: Quadratic forms with applications to algebraic geometry and topology. London Math. Soc. Lecture Notes Ser. Cambridge Univ. Press 217, (1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Nikolayevsky.

Additional information

Mathematics Subject Classification (2000): 53B20

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolayevsky, Y. Osserman manifolds of dimension 8. manuscripta math. 115, 31–53 (2004). https://doi.org/10.1007/s00229-004-0480-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-004-0480-y

Keywords

Navigation