Skip to main content
Log in

Classical Yang-Baxter equation and left invariant affine geometry on lie groups

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract.

Let G be a Lie group, T*G=Lie(G)*⋊G its cotangent bundle considered as a Lie group, where G acts on Lie(G)* via the coadjoint action. Each solution r of the Classical Yang Baxter Equation on G, corresponds to a connected Lie subgroup H of T*G such that Lie(H) is a Lagrangian graph in Lie(G)⊕Lie(G)* and H carries a left invariant affine structure. If r is invertible, the Poisson Lie tensor π given by r on G is polynomial of degree at most 2 and every double Lie group of (G,π) is endowed with an affine and a complex structures ∇ and J, both left invariant and given by r, such that ∇J=0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chu, B.-Y.: Symplectic homogeneous spaces. Trans. Am. Math. Soc. 197, 145–159 (1974)

    MATH  Google Scholar 

  2. Bordemann, M.: Generalised Lax pairs, the modified classical Yang-Baxter equation, and affine geometry of Lie groups. Commun. Math. Phys. 135(1), 201–216 (1990)

    MATH  Google Scholar 

  3. Dardié, J.M., Medina, A.: Double extension symplectique d’un groupe de Lie symplectique. Adv. Math. 117(2), 208–227 (1996)

    Article  Google Scholar 

  4. Dardié, J.M., Medina, A.: Algèbres de Lie kählériennes et double extension. J. Algebra 185, 774–795 (1996)

    Article  MathSciNet  Google Scholar 

  5. Diatta, A.: Géométrie de Poisson et de Contact des espaces homogènes. Ph.D. Thesis of Mathematics. University Montpellier 2, France (2000)

  6. Drinfeld, V.G.: Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations. Sov. Math., Dokl. 27, 68–71 (1983)

    Google Scholar 

  7. Fried, D., Goldman, W., Hirsch, M.W.: Affine manifolds and solvable groups. Bull. Amer. Math. Soc. (N.S.) 3(3), 1045–1047 (1980)

    MATH  Google Scholar 

  8. Helmstetter, J.: Radical d’une algèbre symétrique à gauche. Ann. Inst. Fourier 29(4), 17–35 (1979)

    MATH  Google Scholar 

  9. Koszul, J.L.: Sur la forme hermitienne canonique des espaces homogènes complexes. Can. J. Math. 7, 562–576 (1955)

    MathSciNet  MATH  Google Scholar 

  10. Koszul, J.L.: Domaines bornés homogènes et orbites de groupes de transformations affines. Bull. Soc. Math. Fr. 89, 515–533 (1961)

    MATH  Google Scholar 

  11. Lichnerowicz, A.: Les variétés de Poisson et leurs algèbres de Lie associées. J. Differ. Geom. 12, 253–300 (1977)

    MATH  Google Scholar 

  12. Lichnerowicz, A., Medina, A.: On Lie groups with left invariant symplectic or kahlerian structures. Lett. Math. Phys. 16(3), 225–235 (1988)

    MATH  Google Scholar 

  13. Lichnerowicz, A.: Les groupes Kählériens, in Symplectic Geometry and Mathematical Physics Proc. Colloq., Aix-en- Provence/Fr. 1990. Prog. Math. 99, 245–259 (1991)

  14. Lu, J.-H., Weinstein, A.: Poisson Lie groups, dressing transformations, and Bruhat decompositions. J. Differ. Geom. 31(2), 501–526 (1990)

    MATH  Google Scholar 

  15. Medina Perea, A.: Flat left-invariant connections adapted to the automorphism structure of a Lie group. J. Differ. Geom. 16(3), 445–474 (1981–82)

    MATH  Google Scholar 

  16. Medina, A., Revoy, Ph.: Groupes de Lie à structure symplectique invariante. Symplectic geometry, groupoids and integrable systems, in ‘‘Séminaire Sud Rodhanien’’, M.S.R.I, New York/Berlin: Springer-Verlag, 1991, pp. 247–266

  17. Milnor, J.: On fundamental groups of complete affinely flat manifolds. Adv. Math. 25(2), 178–187 (1977)

    MATH  Google Scholar 

  18. Nijenhuis, A.: Sur une classe de propriétés communes à quelques types différents d’algèbres. Enseign. Math. II Sér. 14, 225–277 (1968)

    MATH  Google Scholar 

  19. Semenov Tian Shansky, M. A.: What a classical r-matrix is. Funct. Anal. Appl. 17, 259–272 (1983).

    Google Scholar 

  20. Vinberg E. B.: Convex homogeneous domains. Dokl. Akad. Nauk SSSR 141, 521–524 (1961)

    Google Scholar 

  21. Weinstein, A.: The local structure of Poisson manifolds. J. Differ. Geom. 18, 523–557 (1983)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Diatta.

Additional information

Mathematics Subject Classification (2000): 53D17, 53A15, 17B62

Acknowledgements. The first author was partially supported by Enterprise Ireland. He wishes to thank the mathematical department of NUI Maynooth for their kind welcome, during his stay.

Revised version: 5 April 2004

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diatta, A., Medina, A. Classical Yang-Baxter equation and left invariant affine geometry on lie groups. manuscripta math. 114, 477–486 (2004). https://doi.org/10.1007/s00229-004-0475-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-004-0475-8

Keywords

Navigation