Advertisement

manuscripta mathematica

, Volume 113, Issue 3, pp 359–370 | Cite as

The chiral de rham complex and positivity of the equivariant signatures of some loop spaces

  • V. GorbounovEmail author
  • F. Malikov
Article

Abstract.

In this note we show that the positivity property of the equivariant signature of the loop space, first observed in [MS1] in the case of the even-dimensional projective spaces, is valid for Picard number 2 toric varieties. A new formula for the equivariant signature of the loop space in the case of a toric spin variety is derived.

Keywords

Projective Space Toric Variety Positivity Property Loop Space Spin Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borisov, L., Libgober, A.: Elliptic Genera and Applications to Mirror Symmetry. Inv. Math. 140, 453–485 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Bott, R., Taubes, C.: On the rigidity theorems of Witten. J. Am. Math. Soc. 2 (1), 137–186 (1989)zbMATHGoogle Scholar
  3. 3.
    Bukhshtaber, V.M., Ray, N.: Toric manifolds and complex cobordisms. (Russian) Uspekhi Mat. Nauk 53 (2)(320), 139–140 (1998); translation in Russian Math. Surveys 53 (2), 371–373 (1998)zbMATHGoogle Scholar
  4. 4.
    Dessai, A.N.: Elliptic genera, positive curvature and symmetry. Preprint, 2002Google Scholar
  5. 5.
    Gorbounov, V., Malikov, F., Schechtman, V.: Gerbes of chiral differential operators II and III. math.AG/0003170 and math.AG/0005201Google Scholar
  6. 6.
    Hirzebruch, F., Berger, Th., Jung, R.: Manifolds and modular forms. With appendices by Nils-Peter Skoruppa and by Paul Baum. Aspects of Mathematics. E20. Friedr. Vieweg & Sohn, Braunschweig, 1992Google Scholar
  7. 7.
    Hirzebruch, F., Slodowy, P.: Elliptic genera, involutions, and homogeneous spin manifolds. Geom. Dedicata 35 (1-3), 309–343 (1990)Google Scholar
  8. 8.
    Kac, V.: Vertex algebras for beginners, Second Edition, University Lecture Series. 10, American Mathematical Society, Providence, Rhode Island, 1998Google Scholar
  9. 9.
    Kleinschidt, P.: A classification of toric varieties with few generators. Aerquationes Mathematicae 35, 254–266 (1988)Google Scholar
  10. 10.
    Kapranov, M., Vasserot, E.: Vertex algebras and the formal loop space. math.AG/0107143Google Scholar
  11. 11.
    Malikov, F., Schechtman, V., Vaintrob, A.: Chiral de Rham complex. Comm. Math. Phys. 204, 439–473 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Malikov, F., Schechtman, V.: Deformations of chiral algebras and quantum cohomology of toric varieties. To appear in Comm. Math. Phys.Google Scholar
  13. 13.
    Malikov, F., Schechtman, V.: Chiral Poincaré duality. Math. Res. Lett. 6, 533–546 (1999)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Ochanine, S.: Sur les genres multiplicatifs définis par des intégrales elliptiques. (French) [On multiplicative genera defined by elliptic integrals] Topology 26 (2), 143–151 (1987)zbMATHGoogle Scholar
  15. 15.
    Witten, E.: The index of the Dirac operator in loop space. In: Elliptic curves and modular forms in algebraic topology Princeton, NJ, 1986, pp. 161–181; Lect. Notes in Math. 1326, (1988)Google Scholar
  16. 16.
    Zhu, Y.: Modular invariance of characters of vertex operators algebras. J. Am. Math. Soc. 9 (1), 237–302 (1996)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Mathematics DepartmentUniversity of KentuckyUSA

Personalised recommendations