Skip to main content
Log in

On the Lusternik-Schnirelman theory of a real cohomology class

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract.

Farber developed a Lusternik-Schnirelman theory for finite CW-complexes X and cohomology classes ξ H 1(X;ℝ). This theory has similar properties as the classical Lusternik-Schnirelman theory. In particular in [7] Farber defines a homotopy invariant cat(X,ξ) as a generalization of the Lusternik-Schnirelman category. If X is a closed smooth manifold this invariant relates to the number of zeros of a closed 1-form ω representing ξ. Namely, a closed 1-form ω representing ξ which admits a gradient-like vector field with no homoclinic cycles has at least cat(X,ξ) zeros. In this paper we define an invariant F(X,ξ) for closed smooth manifolds X which gives the least number of zeros a closed 1-form representing ξ can have such that it admits a gradient-like vector field without homoclinic cycles and give estimations for this number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bieri, R., Geoghegan, R.: Connectivity properties of group actions on non-positively curved spaces. Mem. Amer. Math. Soc. 161 (765) 2003

    Google Scholar 

  2. Bieri, R., Neumann, W., Strebel, R.: A geometric invariant of discrete groups. Invent. Math. 90, 451–477 (1987)

    MathSciNet  MATH  Google Scholar 

  3. Bieri, R., Renz, B.: Valuations on free resolutions and higher geometric invariants of groups. Comment. Math. Helv. 63, 464–497 (1988)

    MathSciNet  MATH  Google Scholar 

  4. Cohn, P.: Free rings and their relations. London Mathematical Society Monographs, No. 2, Academic Press, London-New York, 1971

  5. Farber, M.: Lusternik-Schnirelman theory for closed 1-forms. Comment. Math. Helv 75, 156–170 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Farber, M.: Topology of closed 1-forms and their critical points. Topology 40, 235–258 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Farber, M.: Zeros of closed 1-forms, homoclinic orbits and Lusternik-Schnirelman theory. Topol. Meth. Nonlinear Anal. 19, 123–152 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Farber, M.: Lusternik-Schnirelman theory and dynamics. Lusternik-Schnirelmann category and related topics (South Hadley, MA, 2001), 95-111, Contemp. Math. 316, Am. Math. Soc., Providence, RI, 2002

    Google Scholar 

  9. Latour, F.: Existence de 1-formes fermées non singulières dans une classe de cohomologie de de Rham. Publ. IHES No 80, 135–194 (1994)

    MATH  Google Scholar 

  10. Milnor, J.: Lectures on the h-cobordism theorem. Notes by L. Siebenmann and J. Sondow, Princeton University Press, Princeton, N.J. 1965

  11. Pazhitnov, A.: Surgery on the Novikov complex. K-Theory 10, 323–412 (1996)

    MathSciNet  MATH  Google Scholar 

  12. Pajitnov, A.: C 0-generic properties of boundary operators in the Novikov complex. Pseudoperiodic topology, Amer. Math. Soc. Transl. Ser 2 (197), 29–115 (1999)

    Google Scholar 

  13. Schofield, A.: Representation of rings over skew fields, London Mathematical Society Lecture Note Series, 92, Cambridge University Press, Cambridge, 1985

  14. Schütz, D.: One parameter fixed point theory and gradient flows of closed 1-forms. K-theory 25, 59-97 (2002)

    Article  MathSciNet  Google Scholar 

  15. Schütz, D.: Controlled connectivity of closed 1-forms. Algebr. Geom. Topol. 2, 171–217 (2002)

    MathSciNet  Google Scholar 

  16. Schütz, D.: Zeta functions for gradients of closed 1-forms. Preprint

  17. Takens, F.: The minimal number of critical points of a function on a compact manifold and the Lusternik-Schnirelman category. Invent. Math 6, 197–244 (1968)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Schütz.

Additional information

Mathematics Subject Classification (2000): Primary 37C29; Secondary 58E05

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schütz, D. On the Lusternik-Schnirelman theory of a real cohomology class. manuscripta math. 113, 85–106 (2004). https://doi.org/10.1007/s00229-003-0423-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-003-0423-z

Keywords

Navigation