Advertisement

manuscripta mathematica

, Volume 113, Issue 1, pp 69–84 | Cite as

Elementary transformations and the rationality of the Moduli Spaces of Vector Bundles on ℙ2

  • L. CostaEmail author
  • R.M. Miró-Roig
Article

Abstract.

In this work, using elementary transformations and prioritary sheaves, we establish birational maps between certain moduli spaces of stable vector bundles over ℙ2 with the same rank and different Chern classes. As an application we give a simple proof of the rationality of the moduli spaces M(r; c 1, c 2) of rank r stable vector bundles over ℙ2 with given Chern classes for a huge families of the triples (r; c 1, c 2).

Keywords

Modulus Space Vector Bundle Simple Proof Chern Class Elementary Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barth,~W.: Moduli of vector bundles on the projective plane. Inv. Math. 42, 63–91 (1977)zbMATHGoogle Scholar
  2. 2.
    Beauville,~A., Colliot-ThélÈne,~J.L., Sansuc,~J.J., Swinnerton-Dyer,~P.: Varietes stablement rationnelles non rationnelles. Ann. Math. 121, 283–318 (1985)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Beilinson,~A.A.: Coherent sheaves on ℙn and Problems of Linear Algebra. Funkt. Anal. Appl. 12, 214–216 (1979)zbMATHGoogle Scholar
  4. 4.
    Brun,~J., Hirschowitz,~A.: Droites de saut des fibrés stables de rang élevé sur ℙ2. Math. Z. 181, 171–178 (1982)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Clemens,~H., Griffiths,~Ph.: The intermediate Jacobian of the cubic threefold. Ann. Math. 95, 281–356 (1972)zbMATHGoogle Scholar
  6. 6.
    Costa,~L., Miró-Roig,~R.M.: Rationality of moduli spaces of vector bundles on Hirzebruch surfaces. Crelle J. 509, 151–166 (1999)zbMATHGoogle Scholar
  7. 7.
    Costa,~L., Miró-Roig,~R.M.: The rationality of the moduli spaces of vector bundles on rational surfaces. Nagoya Math. J. 165, 43–69 (2002)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Drézet,~J.M., Le Potier,~J.: Fibrés stables et fibrés exceptionels sur ℙ2, Ann. Sci. Ecole Norm. Sup. 18, 193–243 (1985)MathSciNetGoogle Scholar
  9. 9.
    Ellingsrud,~G.: Sur l’irreducibilité du module des fibrés stables sur ℙ2. Math. Z. 182, 189–192 (1983)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Ellingsrud,~G., Stromme,~S.A.: On the rationality of the moduli space for rank 2 vector bundles on ℙ2. LNM 1273, 363–371 (1987)zbMATHGoogle Scholar
  11. 11.
    Hirschowitz,~A., Laszlo,~Y.: Fibrés génériques sur le plan projectif. Math. Annalen 297, 85–102 (1993)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Hulek,~K.: On the classification of stable rank r vector bundles over the projective plane. 7, Birkhaüser, Progress in Math. 1980, pp. 113–144Google Scholar
  13. 13.
    Katsylo,~P.I.: Birational geometry of moduli varieties of vector bunles over ℙ2. Math. USSR Izvestiya 38, 419–428 (1992)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Kollar,~J., Schreyer,~F.: The moduli of curves is stably rational for g≤6. Duke Math. J. 51 (1), 239–242 (1984)zbMATHGoogle Scholar
  15. 15.
    Lange,~H.: Universal families of extensions. J. Algebra 83, 101–112 (1983)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Li,~W.P.: Relations betweeen moduli spaces of stable bundles on ℙ2 and rationalilty. Crelle J. 484, 201–216 (1997)Google Scholar
  17. 17.
    Maeda,~T.: An elementary proof of the ratinality of the moduli space of rank 2 vector bundles on ℙ2. Hirosh. Math. J. 20, 103–107 (1990)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Maruyama,~M.: Moduli of stable sheaves II. J. Math. Kyoto Univ. 18, 557–614 (1978)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Maruyama,~M.: Elementary transformations in the theory of algebraic vector bundles. LNM 961, 241–266 (1983)zbMATHGoogle Scholar
  20. 20.
    Maruyama,~M.: Singularities of the curve of jumping lines of a vector bundle of rank 2 on ℙ2. LNM 1016, 370–411 (1983)zbMATHGoogle Scholar
  21. 21.
    Maruyama,~M.: The rationality of the moduli spaces of vector bundles of rank 2 on ℙ2. Adv. Stud. Pure Math., 10, Algebraic geometry, Sendai, 1985, pp. 399–414Google Scholar
  22. 22.
    Okonek,~C., Scneider,~M., Spindler,~H.: Vector bundles on complex projective spaces. Progress in Math. 3, Birkhauser, 1980Google Scholar
  23. 23.
    Schofield,~A.: Birational classification of moduli spaces of vector bundles over ℙ2. Indag. Math. (N.S.) 12 (3), 433–448 (2001)zbMATHGoogle Scholar
  24. 24.
    Tyurin,~A.: On the classification of 2-dimensional vector bundles over algebraic curves of arbitrary genus. Izv. Akad. Nauk SSSR ser Math. 28, 21–52 (1964)zbMATHGoogle Scholar
  25. 25.
    Yoshioka,~K.: Some notes on the moduli of stable sheaves on elliptic surfaces. Nagoya Math. J. 154, 73–102 (1999)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Facultat de MatemàtiquesDepartament d’Algebra i GeometriaBarcelonaSpain

Personalised recommendations