Advertisement

manuscripta mathematica

, Volume 113, Issue 1, pp 35–68 | Cite as

Geometric Syzygies of Elliptic Normal Curves and their Secant Varieties

  • Hans-Christian Graf v. BothmerEmail author
  • Klaus Hulek
Article

Abstract.

We show that the linear syzygy spaces of elliptic normal curves, their secant varieties and of bielliptic canonical curves are spanned by geometric syzygies.

Keywords

Secant Variety Normal Curf Canonical Curf Elliptic Normal Curf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of Algebraic Curves. Grundlehren der mathematischen Wissenschaften 129. Springer, Heidelberg, 1985Google Scholar
  2. 2.
    Ciliberto, C., Sernesi, E.: Singularities of the theta divisor and families of secant spaces to a canonical curve. J. Algebra 171, 867–893 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Ehbauer, S.: Syzygies of points in projective space and applications. In: F. Orecchia, (ed.), Zero-dimensional schemes. Proceedings of the international conference held in Ravelo, Italy, June 8-13, 1992, Berlin, 1994, pp. 145–170. de GruyterGoogle Scholar
  4. 4.
    Eisenbud, D.: Linear sections of determinantal varieties. Am. J. Math. 110 (3), 541–575 (1988)zbMATHGoogle Scholar
  5. 5.
    Eisenbud, D.: Commutative Algebra - with a View Toward Algebraic Geometry. Graduate Texts in Mathematics 150, Springer, New York, 1995Google Scholar
  6. 6.
    Eusen, F.: Der Ansatz von Paranjape und Ramanan bei der Vermutung von Green. Dissertation, Universität Hannover, 1994Google Scholar
  7. 7.
    Green, M., Lazarsfeld., R.: The non-vanishing of certain Koszul cohomology groups. J. Diff. Geom. 19, 168–170 (1984)zbMATHGoogle Scholar
  8. 8.
    Green., M.L.: Koszul cohomology and the geometry of projective varieties. J. Diff. Geom. 19, 125–171 (1984)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Green., M.L.: Quadrics of rank four in the ideal of a canonical curve. Inv. Math. 75, 85–104 (1984)Google Scholar
  10. 10.
    Daniel, R.: Grayson and Michael~E. Stillman. Macaulay 2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2
  11. 11.
    Hartshorne, R.: Algebraic Geometry. Graduate Texts in Math. 52. Springer, Heidelberg, 1977Google Scholar
  12. 12.
    Schreyer., F.O.: Syzygies of canonical curves and special linear series. Math. Ann. 275, 105–137 (1986)Google Scholar
  13. 13.
    Montserrat Teixidor i Bigas.: Green’s conjecture for the generic r-gonal curve of genus g≥ 3r-7. Duke Math. J. 111 (2), 195–222 (2002)zbMATHGoogle Scholar
  14. 14.
    H.-Chr. Graf v. Bothmer.: Geometrische Syzygien von kanonischen Kurven. Dissertation, Universität Bayreuth, 2000Google Scholar
  15. 15.
    H.-Chr. Graf v. Bothmer.: Geometric syzygies of Mukai varieties and general canonical curves with genus ≤8. math.AG/0202133, 2002Google Scholar
  16. 16.
    Voisin, C.: Green’s generic syzygy conjecture for curves of even genus lying on a K3 surface. J. Eur. Math. Soc. (JEMS) 4 (4), 363–404 (2002)CrossRefzbMATHGoogle Scholar
  17. 17.
    Voisin, C.: Green’s canonical syzygy conjecture for generic curves of odd genus. math.AG/0301359, 2003Google Scholar
  18. 18.
    Weibel, C.A: An Introduction to Homological Algebra, Volume~38 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1994Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Institut für MathematikUniversität HannoverHannoverGermany

Personalised recommendations