Advertisement

manuscripta mathematica

, Volume 113, Issue 1, pp 1–23 | Cite as

Groupes géométriquement finis d’automorphismes d’arbres et approximation diophantienne dans les arbres

  • Frédéric PaulinEmail author
Article

Abstract.

We introduce a class of non uniform tree lattices, analogous to the fundamental group of geometrically finite negatively curved manifolds. This class contains all the algebraic examples. Given such a tree lattice, we develop, as in [HP2] in the manifold case, a theory of diophantine approximation of points in the boundary of the tree by the parabolic fixed points. We compute approximation constants for some algebraic examples. All results are expressed intrinsically in terms of a natural geodesic flow for a graph of groups.

Keywords

Fundamental Group Tree Lattice Diophantine Approximation Geodesic Flow Approximation Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bass,~H., Lubotzky,~A.: Tree lattices. Prog. Math. 176, Birkhäuser, 2001Google Scholar
  2. 2.
    Broise,~A., Paulin,~F.: Dynamique sur le rayon modulaire et fractions continues en caractéristique p, prépublication. Univ. Orsay, juin 2002Google Scholar
  3. 3.
    Bruhat,~F., Tits,~J.: Groupes réductifs sur un corps local (données radicielles valuées). Pub. Math. I.H.E.S. 41, 5–252 (1972)zbMATHGoogle Scholar
  4. 4.
    Bourdon,~M.: Structure conforme au bord et flot géodésique d’un CAT(-1) espace. L’Ens. Math. 41, 63–102 (1995)zbMATHGoogle Scholar
  5. 5.
    Bowditch,~B.: Geometrical finiteness with variable negative curvature. Duke Math. J. 77, 229–274 (1995)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Coornaert,~M.: Mesures de Patterson-Sullivan sur le bord d’un espace hyperbolique au sens de Gromov. Pacific J. Math. 159, 241–270 (1993)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Dal’Bo,~F.: Topologie du feuilletage fortement stable. Ann. Inst. Fourier, Grenoble 50, 1–13 (2000)Google Scholar
  8. 8.
    Hersonsky,~S., Paulin,~F.: On the rigidity of discrete isometry groups of negatively curved spaces. Comm. Math. Helv. 72, 349–388 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Hersonsky,~S., Paulin,~F.: Diophantine approximation for negatively curved manifolds, I. Math. Zeit. 241, 181–226 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Hersonsky,~S., Paulin,~F.: Diophantine Approximation on Negatively Curved Manifolds and in the Heisenberg Group. Dans ‘‘Rigidity in dynamics and geometry (Cambridge, 2000)’’, M. Burger, A. Iozzi (eds.), Springer Verlag, 2002Google Scholar
  11. 11.
    Hersonsky,~S., Paulin,~F.: Counting orbit points in covering of negatively curved manifolds and Hausdorff dimension of cusp excursions. À paraître dans Erg. Theo. Dyn. Sys.Google Scholar
  12. 12.
    Lasjaunias,~A.: A survey of diophantine approximation in fields of power series. Monat. Math. 130, 211–229 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Lubotzky,~A.: Lattices in rank one Lie groups over local fields. GAFA 1, 405–431 (1991)zbMATHGoogle Scholar
  14. 14.
    Paulin,~F.: Groupe modulaire, fractions continues et approximation diophantienne en caractéristique p. Geom. Dedi. 95, 65–85 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Roblin,~T.: Ergodicité du feuilletage horocyclique, mélange du flot géodésique et équidistribution pour les groupes discrets en courbure négative. À paraître dans Mém. Soc. Math. FranceGoogle Scholar
  16. 16.
    Schmidt,~W.: On continued fractions and diophantine approximation in power series fields. Acta Arith. XCV, 139–166 (2000)Google Scholar
  17. 17.
    Serre,~J.-P.: Arbres, amalgames, SL2. Astérisque 46, Soc. Math. France, 1983Google Scholar
  18. 18.
    Soulé,~C.: Chevalley groups over polynomial rings. In: ‘‘Homological group theory’’. Proc. Symp. Durham 1977, Lond. Math. Soc. Lect. Notes 36, 359–367 (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques UMR 8628 CNRS, Equipe de Topologie et Dynamique (Bât. 425)Université Paris-SudORSAY CedexFrance

Personalised recommendations