Skip to main content
Log in

Population pharmacokinetics of oxcarbazepine active metabolite in Chinese paediatric epilepsy patients and its application in individualised dosage regimens

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Oxcarbazepine (OXC) is an antiepileptic drug metabolised to active 10-monohydroxy derivative (MHD) following oral administration. There are no MHD population pharmacokinetic (PPK) models that describe the influence of genetic factors on MHD pharmacokinetics (PK). We developed a PPK model of MHD to investigate gene polymorphism of enzymes associated with MHD PK in Chinese paediatric epilepsy patients and evaluated its utility for dose individualisation.

Methods

Data were prospectively collected from 141 paediatric epilepsy patients (aged ≤ 14 years) who received OXC therapy at the First Affiliated Hospital of Fujian Medical University. The trough concentrations at steady state were determined by enzyme-multiplied immunoassay. Patients were genotyped for four single nucleotide polymorphisms (UGT2B7 802T>C, UGT1A9 I399C>T, ABCB1 3435C>T, and ABCB2 1249G>A). Patient gender, age, body weight (BW), hepatorenal function, and co-administrations were recorded. The PPK model was developed using nonlinear mixed-effects modelling software. The clinical performance of the final model was evaluated by including additional paediatric patients (n = 20) in the validation group.

Results

Oral clearance of MHD was significantly influenced by BW. The MHD PK was unrelated to the other covariates, such as the four single nucleotide polymorphisms and co-administration with new-generation antiepileptic drugs. The final BW-dependent exponent model showed the best fit with our data and predicted the trough concentrations in the validation group more accurately than the basic model. A new dosing strategy combining the dosage guideline and Bayesian method is proposed to individualise OXC regimens.

Conclusion

A PPK model was established to estimate individual MHD clearance in paediatric patients taking OXC to develop individualised OXC dosing regimens for Chinese paediatric epilepsy patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Glauser TA (2001) Oxcarbazepine in the treatment of epilepsy. Pharmacotherpay 21:904–919. https://doi.org/10.1592/phco.21.11.904.34513

    Article  CAS  Google Scholar 

  2. Piña-Garza JE, Espinoza R, Nordli D, Bennett DA, Spirito S, Stites TE, Tang D, Sturm Y (2005) Oxcarbazepine adjunctive therapy in infants and young children with partial seizures. Neurology 65:1370–1375. https://doi.org/10.1212/01.wnl.0000186800.18456.72

    Article  CAS  PubMed  Google Scholar 

  3. Johannessen SI, Battino D, Berry DJ, Bialer M, Krämer G, Tomson T, Patsalos PN (2003) Therapeutic drug monitoring of the newer antiepileptic drugs. Ther Drug Monit 25:347–363. https://doi.org/10.1097/00007691-200306000-00016

    Article  CAS  PubMed  Google Scholar 

  4. Sattler A, Schaefer M, May TW (2015) Relationship between mono-hydroxy-carbazepine serum concentrations and adverse effects in patients on oxcarbazepine monotherapy. Seizure 31:149–154. https://doi.org/10.1016/j.seizure.2015.07.018

    Article  PubMed  Google Scholar 

  5. Striano S, Striano P, Di Nocera P, Italiano D, Fasiello C, Ruosi P, Bilo L, Pisani F (2006) Relationship between serum mono-hydroxy-carbazepine concentrations and adverse effects in patients with epilepsy on high-dose oxcarbazepine therapy. Epilepsy Res 69:170–176. https://doi.org/10.1016/j.eplepsyres.2006.01.011

    Article  CAS  PubMed  Google Scholar 

  6. Patsalos PN, Berry DJ, Bourgeois BF, Cloyd JC, Glauser TA, Johannessen SI, Leppik IE, Tomson T, Perucca E (2008) Antiepileptic drugs--best practice guidelines for therapeutic drug monitoring: a position paper by the subcommission on therapeutic drug monitoring, ILAE Commission on Therapeutic Strategies. Epilepsia 49:1239–1276. https://doi.org/10.1111/j.1528-1167.2008.01561.x

    Article  CAS  PubMed  Google Scholar 

  7. Wellington K, Goa KL (2001) Oxcarbazepine: an update of its efficacy in the management of epilepsy. CNS Drugs 15:137–163. https://doi.org/10.2165/00023210-200115020-00005

    Article  CAS  PubMed  Google Scholar 

  8. May TW, Korn-Merker E, Rambeck B (2003) Clinical pharmacokinetics of oxcarbazepine. Clin Pharmacokinet 42:1023–1042. https://doi.org/10.2165/00003088-200342120-00002

    Article  CAS  PubMed  Google Scholar 

  9. Flesch G (2004) Overview of the clinical pharmacokinetics of oxcarbazepine. Clin Drug Investig 24:185–203. https://doi.org/10.2165/00044011-200424040-00001

    Article  CAS  PubMed  Google Scholar 

  10. Guillemette C (2003) Pharmacogenomics of human UDP-glucuronosyltransferase enzymes. Pharmacogenomics J 3:136–158. https://doi.org/10.1038/sj.tpj.6500171

    Article  CAS  PubMed  Google Scholar 

  11. Ma CL, Wu XY, Jiao Z, Hong Z, Wu ZY, Zhong MK (2015) SCN1A, ABCC2 and UGT2B7 gene polymorphisms in association with individualized oxcarbazepine therapy. Pharmacogenomics 16:347–360. https://doi.org/10.2217/pgs.14.186

    Article  CAS  PubMed  Google Scholar 

  12. Lu Y, Fang Y, Wu X, Ma C, Wang Y, Xu L (2016) Effects of UGT1A9 genetic polymorphisms on monohydroxylated derivative of oxcarbazepine concentrations and oxcarbazepine monotherapeutic efficacy in Chinese patients with epilepsy. Eur J Clin Pharmacol 73:1–9. https://doi.org/10.1007/s00228-016-2157-3

    Article  CAS  Google Scholar 

  13. Begley DJ (2004) ABC transporters and the blood-brain barrier. Curr Pharm Des 10:1259–1312. https://doi.org/10.2174/1381612043384844

    Article  Google Scholar 

  14. Sisodiya SM, Thom M (2003) Widespread upregulation of drug-resistance proteins in fatal human status epilepticus. Epilepsia 44:261–264. https://doi.org/10.1046/j.1528-1157.2003.42802.x

    Article  PubMed  Google Scholar 

  15. Löscher W, Potschka H (2005) Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci 6:591–602. https://doi.org/10.1038/nrn1728

    Article  CAS  PubMed  Google Scholar 

  16. Potschka H, Fedrowitz M, Löscher W (2001) P-glycoprotein and multidrug resistance-associated protein are involved in the regulation of extracellular levels of the major antiepileptic drug carbamazepine in the brain. Neuroreport 12:3557–3560. https://doi.org/10.1097/00001756-200111160-00037

    Article  CAS  PubMed  Google Scholar 

  17. Löscher W, Potschka H (2002) Role of multidrug transporters in pharmacoresistance to antiepileptic drugs. J Pharmacol Exp Ther 301:7–14. https://doi.org/10.1124/jpet.301.1.7

    Article  PubMed  Google Scholar 

  18. Marchi N, Guiso G, Rizzi M, Pirker S, Novak K, Czech T, Baumgartner C, Janigro D, Caccia S, Vezzani A (2005) A pilot study on brain-to-plasma partition of 10,11-dyhydro-10-hydroxy-5H-dibenzo(b,f)azepine-5-carboxamide and MDR1 brain expression in epilepsy patients not responding to oxcarbazepine. Epilepsia 46:1613–1619. https://doi.org/10.1111/j.1528-1167.2005.00265.x

    Article  CAS  PubMed  Google Scholar 

  19. Zhang C, Zuo Z, Kwan P, Baum L (2011) In vitro transport profile of carbamazepine, oxcarbazepine, eslicarbazepine acetate, and their active metabolites by human P-glycoprotein. Epilepsia 52:1894–1904. https://doi.org/10.1111/j.1528-1167.2011.03140.x

    Article  CAS  PubMed  Google Scholar 

  20. Meng H, Guo G, Ren J, Zhou H, Ge Y, Guo Y (2011) Effects of ABCB1 polymorphisms on plasma carbamazepine concentrations and pharmacoresistance in Chinese patients with epilepsy. Epilepsy Behav 21:27–30. https://doi.org/10.1016/j.yebeh.2011.02.015

    Article  PubMed  Google Scholar 

  21. Kim WJ, Lee JH, Yi J, Cho YJ, Heo K, Lee SH, Kim SW, Kim MK, Kim KH, In Lee B, Lee MG (2010) A nonsynonymous variation in MRP2/ABCC2 is associated with neurological adverse drug reactions of carbamazepine in patients with epilepsy. Pharmacogenet Genomics 20:249–256. https://doi.org/10.1097/FPC.0b013e328338073a

    Article  CAS  PubMed  Google Scholar 

  22. Zhang C, Kwan P, Zhong Z, Baum L (2012) The transport of antiepileptic drugs by P-glycoprotein. Adv Drug Deliv Rev 64:930–942. https://doi.org/10.1016/j.addr.2011.12.003

    Article  CAS  PubMed  Google Scholar 

  23. Puranik YG, Birnbaum AK, Marino SE, Ahmed G, Cloyd J, Remmel RP, Leppik IE, Lamba JK (2013) Association of carbamazepine major metabolism and transport pathway gene polymorphisms and pharmacokinetics in patients with epilepsy. Pharmacogenomics 14:35–45. https://doi.org/10.2217/pgs.12.180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Whiting B, Kelman AW, Grevel J (1986) Population pharmacokinetics. Theory and clinical application. Clin Pharmacokinet 11:387–401. https://doi.org/10.2165/00003088-198611050-00004

    Article  CAS  PubMed  Google Scholar 

  25. Sallas WM, Milosavljev S, D’Souza J, Hossain M (2003) Pharmacokinetic drug interactions in children taking oxcarbazepine. Clin Pharmacol Ther 74:138–149. https://doi.org/10.1016/S0009-9236(03)00124-3

    Article  CAS  PubMed  Google Scholar 

  26. Wang Y, Zhang HN, Niu CH, Gao P, Chen YJ, Peng J, Liu MC, Xu H (2014) Population pharmacokinetics modeling of oxcarbazepine to characterize drug interactions in Chinese children with epilepsy. Acta Pharmacol Sin 35:1342–1350. https://doi.org/10.1038/aps.2014.76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sugiyama I, Bouillon T, Yamaguchi M, Suzuki H, Hirota T, Fink M (2015) Population pharmacokinetic analysis for 10-monohydroxy derivative of oxcarbazepine in pediatric epileptic patients shows no difference between Japanese and other ethnicities. Drug Metab Pharmacokinet 30:160–167. https://doi.org/10.1016/j.dmpk.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  28. Rodrigues C, Chiron C, Rey E, Dulac O, Comets E, Pons G, Jullien V (2017) Population pharmacokinetics of oxcarbazepine and its monohydroxy derivative in epileptic children. Br J Clin Pharmacol 83:2695–2708. https://doi.org/10.1111/bcp.13392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Byon W, Smith MK, Chan P, Tortorici MA, Riley S, Dong J, Ruiz-Garcia A, Sweeney K, Cronenberger C (2013) Establishing best practices and guidance in population modeling: an experience with an internal population pharmacokinetic analysis guidance. CPT Pharmacometrics Syst Pharmacol 2:1–8. https://doi.org/10.1038/psp.2013.26

    Article  CAS  Google Scholar 

  30. Schwartz G, Muñoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637. https://doi.org/10.1681/ASN.2008030287

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schwartz GJ, Brion LP, Spitzer A (1987) The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clin N Am 34:571–590. https://doi.org/10.1016/S0031-3955(16)36251-4

    Article  CAS  Google Scholar 

  32. Holford N, Heo YA, Anderson B (2013) A pharmacokinetic standard for babies and adults. J Pharm Sci 102:2941–2952. https://doi.org/10.1002/jps.23574

    Article  CAS  PubMed  Google Scholar 

  33. Wang C, Peeters MY, Allegaert K, Oudalblas HV, Krekels EH, Tibboel D, Danhof M, Knibbe CA (2012) A bodyweight-dependent allometric exponent for scaling clearance across the human life-span. Pharm Res 29:1570–1581. https://doi.org/10.1007/s11095-012-0668-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mandema JW, Verotta D, Sheiner LB (1992) Building population pharmacokinetic--pharmacodynamic models. I. Models for covariate effects. J Pharmacokinet Biopharm 20:511–528. https://doi.org/10.1007/BF01061469

    Article  CAS  PubMed  Google Scholar 

  35. Tunblad K, Lindbom L, Mcfadyen L, Jonsson EN, Marshall S, Karlsson MO (2008) The use of clinical irrelevance criteria in covariate model building with application to dofetilide pharmacokinetic data. J Pharmacokinet Pharmacodyn 35:503–526. https://doi.org/10.1007/s10928-008-9099-z

    Article  CAS  PubMed  Google Scholar 

  36. Staatz CE, Duffull SB, Kiberd B, Fraser AD, Tett SE (2005) Population pharmacokinetics of mycophenolic acid during the first week after renal transplantation. Eur J Clin Pharmacol 61:507–516. https://doi.org/10.1007/s00228-005-0927-4

    Article  CAS  PubMed  Google Scholar 

  37. Gotta V, Buclin T, Csajka C, Widmer N (2013) Systematic review of population pharmacokinetic analyses of imatinib and relationships with treatment outcomes. Ther Drug Monit 35:150–167. https://doi.org/10.1097/FTD.0b013e318284ef11

    Article  CAS  PubMed  Google Scholar 

  38. Af VDM, Marcus MA, Touw DJ, Proost JH, Neef C (2011) Optimal sampling strategy development methodology using maximum a posteriori Bayesian estimation. Ther Drug Monit 33:133–146. https://doi.org/10.1097/FTD.0b013e31820f40f8

    Article  Google Scholar 

  39. Bondareva IB, Hall RW, Andreeva OV, Student KIB (2011) Predictability of individualized dosage regimens of carbamazepine and valproate mono- and combination therapy. J Clin Pharm Ther 36:625–636. https://doi.org/10.1111/j.1365-2710.2010.01215.x

    Article  CAS  PubMed  Google Scholar 

  40. Holford NH, Buclin T (2012) Safe and effective variability-a criterion for dose individualization. Ther Drug Monit 34:565–568. https://doi.org/10.1097/FTD.0b013e31826aabc3

    Article  CAS  PubMed  Google Scholar 

  41. KJS A, Anderson BJ, NHG H, Hall RW, Young T, Shephard B, Desai NS, Barton BA, NEOPAIN Trial Investigators Group (2008) Morphine pharmacokinetics and pharmacodynamics in preterm and term neonates: secondary results from the NEOPAIN trial. Br J Anaesth 101:680–689. https://doi.org/10.1093/bja/aen248

    Article  CAS  Google Scholar 

  42. Anderson BJ, Allegaert K, Jn VDA, Cossey V, Holford NH (2007) Vancomycin pharmacokinetics in preterm neonates and the prediction of adult clearance. Br J Clin Pharmacol 63:75–84. https://doi.org/10.1111/j.1365-2125.2006.02725.x

    Article  CAS  PubMed  Google Scholar 

  43. Mahmood I (2006) Prediction of drug clearance in children from adults: a comparison of several allometric methods. Br J Clin Pharmacol 61:545–557. https://doi.org/10.1111/j.1365-2125.2006.02622.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Peeters MY, Allegaert K, Oudalblas HBV, Cella M, Tibboel D, Danhof M, Knibbe CAJ (2010) Prediction of propofol clearance in children from an allometric model developed in rats, children and adults versus a 0.75 fixed-exponent allometric model. Clin Pharmacokinet 49:269–275. https://doi.org/10.2165/11319350-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  45. Björkman S (2006) Prediction of cytochrome p450-mediated hepatic drug clearance in neonates, infants and children: how accurate are available scaling methods? Clin Pharmacokinet 45:1–11. https://doi.org/10.2165/00003088-200645010-00001

    Article  PubMed  Google Scholar 

  46. Bartelink IH, Boelens JJ, Bredius RG, Egberts AC, Wang C, Bierings MB, Shaw PJ, Nath CE, Hempel G, Zwaveling J, Danhof M, Knibbe CA (2012) Body weight-dependent pharmacokinetics of busulfan in paediatric haematopoietic stem cell transplantation patients: towards individualized dosing. Clin Pharmacokinet 51:331–345. https://doi.org/10.2165/11598180-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  47. Luscombe MD, Owens BD, Burke D (2011) Weight estimation in paediatrics: a comparison of the APLS formula and the formula “weight=3(age)+7”. Emerg Med J 28:590–593. https://doi.org/10.1136/emj.2009.087288

    Article  PubMed  Google Scholar 

  48. Flannigan C, Bourke TW, Sproule A, Stevenson M, Terris M (2014) Are APLS formulae for estimating weight appropriate for use in children admitted to PICU? Resuscitation 85:927–931. https://doi.org/10.1016/j.resuscitation.2014.03.313

    Article  PubMed  Google Scholar 

  49. Ding J, Wang Y, Lin W, Wang C, Zhao L, Li X, Zhao Z, Miao L, Jiao Z (2015) A population pharmacokinetic model of valproic acid in pediatric patients with epilepsy: a non-linear pharmacokinetic model based on protein-binding saturation. Clin Pharmacokinet 54:305–317. https://doi.org/10.1007/s40262-014-0212-8

    Article  CAS  PubMed  Google Scholar 

  50. Miyagi SJ, Collier AC (2011) The development of UDP-glucuronosyltransferases 1A1 and 1A6 in the pediatric liver. Drug Metab Dispos 39:912–919. https://doi.org/10.1124/dmd.110.037192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Barletta E, Mehboob H, Ramírez J, Mirkov S, Zhang M, Liu W (2016) Age-dependent hepatic UDP-glucuronosyltransferase gene expression and activity in children. Front Pharmacol 7:437. https://doi.org/10.3389/fphar.2016.00437

    Article  CAS  Google Scholar 

  52. Wegner I, Edelbroek P, de Haan GJ, Lindhout D, Sander JW (2010) Drug monitoring of lamotrigine and oxcarbazepine combination during pregnancy. Epilepsia 51:2500–2502. https://doi.org/10.1111/j.1528-1167.2010.02771.x

    Article  PubMed  Google Scholar 

  53. May TW, Rambeck B, Jürgens U (1999) Influence of oxcarbazepine and methsuximide on lamotrigine concentrations in epileptic patients with and without valproic acid comedication: results of a retrospective study. Ther Drug Monit 21:175–181. https://doi.org/10.1097/00007691-199904000-00007

    Article  CAS  PubMed  Google Scholar 

  54. Tartara A, Galimberti CA, Manni R, Morini R, Limido G, Gatti G, Bartoli A, Strada G, Perucca E (1993) The pharmacokinetics of oxcarbazepine and its active metabolite 10-hydroxy-carbazepine in healthy subjects and in epileptic patients treated with phenobarbitone or valproic acid. Br J Clin Pharmacol 36:366–368. https://doi.org/10.1111/j.1365-2125.1993.tb00378.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sachdeo R, Beydoun A, Schachter S, Vazquez B, Schaul N, Mesenbrink P, Kramer L, D'Souza J (2001) Oxcarbazepine (Trileptal) as monotherapy in patients with partial seizures. Neurology 57:864–871. https://doi.org/10.1212/WNL.57.5.864

    Article  CAS  PubMed  Google Scholar 

  56. Barcs G, Walker EB, Elger CE, Scaramelli A, Stefan H, Sturm Y, Moore A, Flesch G, Kramer L, D'Souza J (2000) Oxcarbazepine placebo-controlled, dose-ranging trial in refractory partial epilepsy. Epilepsia 41:1597–1607. https://doi.org/10.1111/j.1499-1654.2000.001597.x

    Article  CAS  PubMed  Google Scholar 

  57. Nedelman JR, Hossain M, Chang SW (1999) Oxcarbazepine: analysis of concentration-efficacy/safety relationships. Neurology 52:A524

    Google Scholar 

  58. Kubová H, Mares P (1993) Anticonvulsant action of oxcarbazepine,hydroxycarbazepine, and carbazepine against metrazol-induced motor seizures in developing rats. Epilepsia 34:188–192

    Article  PubMed  Google Scholar 

  59. Antunes NJ, van Dijkman SC, Lanchote VL, Wichert-Ana L, Coelho EB, Alexandre JV, Takayanagui OM, Tozatto E, van Hasselt JGC, Della Pasqua O (2017) Population pharmacokinetics of oxcarbazepine and its metabolite 10-hydroxycarbazepine in healthy subjects. Eur J Pharm Sci 109S:S116–S123. https://doi.org/10.1016/j.ejps.2017.05.034

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin-hua Lin or Chang-lian Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

ESM 1

(DOC 608 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Ww., Li, Xw., Jiao, Z. et al. Population pharmacokinetics of oxcarbazepine active metabolite in Chinese paediatric epilepsy patients and its application in individualised dosage regimens. Eur J Clin Pharmacol 75, 381–392 (2019). https://doi.org/10.1007/s00228-018-2600-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-018-2600-8

Keywords

Navigation