Skip to main content
Log in

Response to sertraline is influenced by GNβ3 gene G-350A variant in patients with major depressive disorder

  • Pharmacogenetics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Heterotrimeric guanine nucleotide-binding proteins (G proteins) are a major group of human genome membrane protein receptors. Genetic variation in the β3 subunit (GNβ3) associated with gene splicing and increased activity is associated with major depressive disorder (MDD). However, the effect of G-350A GNβ3 genetic polymorphism and therapeutic outcome of selective serotonin reuptake inhibitors (SSRIs) in MDD has not yet been studied.

Method

One hundred newly diagnosed MDD patients were treated with sertraline for 6 weeks. The severity of depressive symptoms was weekly assessed by Hamilton Rating Scale for Depression (HRSD). A 50% decrease in HRSD was defined as response to treatment. GNβ3 polymorphisms (G-350A, A657T) were determined in each individual using a PCR-RFLP technique.

Results

Our results suggested that subjects with GG genotype of G-350A responded 5.9-folds more to sertraline compared to carriers of other variants (P = 0.004, OR = 5.9; 95% CI = 1.66–21.99). In addition, carriers of the G allele responded 1.9-folds more to sertraline than carriers of the A allele (P = 0.032, OR = 1.92; 95% CI = 1.05–3.65). However, no association was observed between A657T variants and response to sertraline (P = 0.920, OR = 0.9; 95% CI = 0.31–2.69).

Conclusion

The results suggest that G-350A variant of GNβ3 plays a foremost part as a predictor of response to antidepressant treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ray RS, Corcoran AE, Brust RD, Kim JC, Richerson GB, Nattie E, Dymecki SM (2011) Impaired respiratory and body temperature control upon acute serotonergic neuron inhibition. Science 333(6042):637–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Berger M, Gray JA, Roth BL (2009) The expanded biology of serotonin. Annu Rev Med 60:355–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Meltzer HY, Roth BL (2013) Lorcaserin and pimavanserin: emerging selectivity of serotonin receptor subtype–targeted drugs. J Clin Invest 123(12):4986–4991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rickels K, Amsterdam J, Clary C, Fox I, Schweizer E, Weise C (1989) A placebo-controlled, double-blind, clinical trial of paroxetine in depressed outpatients. Acta Psychiatr Scand 80(S350):117–123

    Article  Google Scholar 

  5. Laws D, Ashford J, Anstee J (1990) A multicentre double-blind comparative trial of fluvoxamine versus lorazepam in mixed anxiety and depression treated in general practice. Acta Psychiatr Scand 81(2):185–189

    Article  CAS  PubMed  Google Scholar 

  6. Stein MB, Liebowitz MR, Lydiard RB, Pitts CD, Bushnell W, Gergel I (1998) Paroxetine treatment of generalized social phobia (social anxiety disorder): a randomized controlled trial. Jama 280(8):708–713

    Article  CAS  PubMed  Google Scholar 

  7. Goodman WK, Price LH, Rasmussen SA, Delgado PL, Heninger GR, Charney DS (1989) Efficacy of fluvoxamine in obsessive-compulsive disorder: a double-blind comparison with placebo. Arch Gen Psychiatry 46(1):36–44

    Article  CAS  PubMed  Google Scholar 

  8. van der Kolk B, Dreyfuss D, Michaels M, Shera D, Berkowitz R, Fisler R, Saxe G (1994) Fluoxetine in posttraumatic stress disorder. J Clin Psychiatry 5(12):517–522

  9. Rocca P, Fonzo V, Scotta M, Zanalda E, Ravizza L (1997) Paroxetine efficacy in the treatment of generalized anxiety disorder. Acta Psychiatr Scand 95(5):444–450

    Article  CAS  PubMed  Google Scholar 

  10. Marshall RD, Schneier FR, Fallon BA, Knight CB, Abbate LA, Goetz D, Campeas R, Liebowitz MR (1998) An open trial of paroxetine in patients with noncombat-related, chronic posttraumatic stress disorder. J Clin Psychopharmacol 18(1):10–18

    Article  CAS  PubMed  Google Scholar 

  11. Nutt DJ, Forshall S, Bell C, Rich A, Sandford J, Nash J, Argyropoulos S (1999) Mechanisms of action of selective serotonin reuptake inhibitors in the treatment of psychiatric disorders. Eur Neuropsychopharmacol 9:S81–S86

    Article  CAS  PubMed  Google Scholar 

  12. Gray JA, Roth BL (2001) Paradoxical trafficking and regulation of 5-HT2A receptors by agonists and antagonists. Brain Res Bull 56(5):441–451

    Article  CAS  PubMed  Google Scholar 

  13. Armbruster BN, Roth BL (2005) Mining the receptorome. J Biol Chem 280(7):5129–5132

    Article  CAS  PubMed  Google Scholar 

  14. Birnbaumer L, Abramowitz J, Brown AM (1990) Receptor-effector coupling by G proteins. Biochim Biophys Acta Rev Biomembr 1031(2):163–224

    Article  CAS  Google Scholar 

  15. Gilman AG (1987) G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56(1):615–649

    Article  CAS  PubMed  Google Scholar 

  16. Drazen JM, Silverman EK, Lee TH (2000) Heterogeneity of therapeutic responses in asthma. Br Med Bull 56(4):1054–1070

    Article  CAS  PubMed  Google Scholar 

  17. Zill P, Baghai TC, Zwanzger P, Schüle C, Minov C, Riedel M, Neumeier K, Rupprecht R, Bondy B (2000) Evidence for an association between a G-protein β3-gene variant with depression and response to antidepressant treatment. Neuroreport 11(9):1893–1897

    Article  CAS  PubMed  Google Scholar 

  18. Pinsonneault J, Sadée W (2003) Pharmacogenomics of multigenic diseases: sex-specific differences in disease and treatment outcome. AAPS PharmSci 5(4):49–61

    Article  PubMed Central  Google Scholar 

  19. MacQueen G, Born L, Steiner M (2001) The selective serotonin reuptake inhibitor sertraline: its profile and use in psychiatric disorders. CNS Drug Rev 7(1):1–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Richelson E (1994) Pharmacology of antidepressants—characteristics of the ideal drug. In: Mayo Clinic Proceedings ed. Elsevier, pp 1069–1081

  21. Firouzabadi N, Raeesi R, Zomorrodian K, Bahramali E, Yavarian I (2017) Beta adrenoceptor polymorphism and clinical response to sertraline in major depressive patients. J Pharm Pharm Sci 20:1–7

    Article  CAS  PubMed  Google Scholar 

  22. Serretti A, Franchini L, Gasperini M, Rampoldi R, Smeraldi E (1998) Mode of inheritance in mood disorder families according to fluvoxamine response. Acta Psychiatr Scand 98(6):443–450

    Article  CAS  PubMed  Google Scholar 

  23. Miller S, Dykes D, Polesky H (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16(3):1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rosskopf D, Busch S, Manthey I, Siffert W (2000) G protein β3 gene: structure, promoter, and additional polymorphisms. Hypertension 36(1):33–41

    Article  CAS  PubMed  Google Scholar 

  25. Machado M, Iskedjian M, Ruiz I, Einarson TR (2006) Remission, dropouts, and adverse drug reaction rates in major depressive disorder: a meta-analysis of head-to-head trials. Curr Med Res Opin 22(9):1825–1837

    Article  CAS  PubMed  Google Scholar 

  26. Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L, Norquist G, Howland RH, Lebowitz B, McGrath PJ (2006) Evaluation of outcomes with citalopram for depression using measurement-based care in STAR* D: implications for clinical practice. Am J Psychiatr 163(1):28–40

    Article  PubMed  Google Scholar 

  27. Franchini L, Serretti A, Gasperini M, Smeraldi E (1998) Familial concordance of fluvoxamine response as a tool for differentiating mood disorder pedigrees. J Psychiatr Res 32(5):255–259

    Article  CAS  PubMed  Google Scholar 

  28. Kirchheiner J, Lorch R, Lebedeva E, Seeringer A, Roots I, Sasse J, Brockmöller J (2008) Genetic variants in FKBP5 affecting response to antidepressant drug treatment Future Medicine 9(7):1––7

  29. Maier W, Zobel A (2008) Contribution of allelic variations to the phenotype of response to antidepressants and antipsychotics. Eur Arch Psychiatry Clin Neurosci 258(1):12–20

    Article  PubMed  Google Scholar 

  30. Joyce PR, Mulder RT, Luty SE, McKenzie JM, Miller AL, Rogers GR, Kennedy MA (2003) Age-dependent antidepressant pharmacogenomics: polymorphisms of the serotonin transporter and G protein β 3 subunit as predictors of response to fluoxetine and nortriptyline. Int J Neuropsychopharmacol 6(4):339–346

    Article  CAS  PubMed  Google Scholar 

  31. Serretti A, Lorenzi C, Cusin C, Zanardi R, Lattuada E, Rossini D, Lilli R, Pirovano A, Catalano M, Smeraldi E (2003) SSRIs antidepressant activity is influenced by Gβ3 variants. Eur Neuropsychopharmacol 13(2):117–122

    Article  CAS  PubMed  Google Scholar 

  32. Klenke S, Kussmann M, Siffert W (2011) The GNB3 C825T polymorphism as a pharmacogenetic marker in the treatment of hypertension, obesity, and depression. Pharmacogenet Genomics 21(9):594–606

    Article  CAS  PubMed  Google Scholar 

  33. Dowlatshahi D, MacQueen GM, Wang JF, Reiach JS, Young LT (1999) G protein-coupled cyclic AMP signaling in postmortem brain of subjects with mood disorders. J Neurochem 73(3):1121–1126

    Article  CAS  PubMed  Google Scholar 

  34. Young LT, Li PP, Kamble A, Siu KP, Warsh JJ (1994) Mononuclear leukocyte levels of G proteins in depressed patients with bipolar disorder or major depressive disorder. Am J Psychiatry 151(4):594–596

    Article  CAS  PubMed  Google Scholar 

  35. Avissar S, Barki-Harrington L, Nechamkin Y, Roitman G, Schreiber G (1996) Reduced β-adrenergic receptor-coupled Gs protein function and Gsα immunoreactivity in mononuclear leukocytes of patients with depression. Biol Psychiatry 39(9):755–760

    Article  CAS  PubMed  Google Scholar 

  36. Bousman CA, Potiriadis M, Everall IP, Gunn JM (2014) G-protein β3 subunit genetic variation moderates five-year depressive symptom trajectories of primary care attendees. J Affect Disord 165:64–68

    Article  CAS  PubMed  Google Scholar 

  37. Müller DJ, De Luca V, Sicard T, King N, Hwang R, Volavka J, Czobor P, Sheitman BB, Lindenmayer J-P, Citrome L (2005) Suggestive association between the C825T polymorphism of the G-protein β3 subunit gene (GNB3) and clinical improvement with antipsychotics in schizophrenia. Eur Neuropsychopharmacol 15(5):525–531

    Article  CAS  PubMed  Google Scholar 

  38. Kato M, Wakeno M, Okugawa G, Fukuda T, Takekita Y, Hosoi Y, Azuma J, Kinoshita T, Serretti A (2008) Antidepressant response and intolerance to SSRI is not influenced by G-protein β3 subunit gene C825T polymorphism in Japanese major depressive patients. Prog Neuro-Psychopharmacol Biol Psychiatry 32(4):1041–1044

    Article  CAS  Google Scholar 

  39. Willeit M, Praschak-Rieder N, Zill P, Neumeister A, Ackenheil M, Kasper S, Bondy B (2003) C825T polymorphism in the G protein β3-subunit gene is associated with seasonal affective disorder. Biol Psychiatry 54(7):682–686

    Article  CAS  PubMed  Google Scholar 

  40. Siffert W, Rosskopf D, Siffert G, Busch S, Moritz A, Erbel R, Sharma AM, Ritz E, Wichmann H-E, Jakobs KH (1998) Association of a human G-protein β3 subunit variant with hypertension. Nat Genet 18(1):45–48

    Article  CAS  PubMed  Google Scholar 

  41. Hirschfeld RM (1999) Efficacy of SSRIs and newer antidepressants in severe depression: comparison with TCAs. J Clin Psychiatry 60(5):326–335

    Article  CAS  PubMed  Google Scholar 

  42. Suri RA, Altshuler LL, Rasgon NL, Calcagno JL, Frye MA, Gitlin MJ, Hwang S, Zuckerbrow-Miller J (2000) Efficacy and response time to sertraline versus fluoxetine in the treatment of unipolar major depressive disorder. J Clin Psychiatry 61(12):942–946

    Article  CAS  PubMed  Google Scholar 

  43. Ozomaro U, Wahlestedt C, Nemeroff CB (2013) Personalized medicine in psychiatry: problems and promises. BMC Med 11(1):132

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This manuscript is dedicated to Professor Habib Firouzabadi, on the occasion of his 75th birthday.

Author information

Authors and Affiliations

Authors

Contributions

Negar Firouzabadi: Design of the work, analysis, and interpretation of data for the work, drafting the work, and final approval of the manuscript.

Dena Firouzabadi: Analysis and interpretation of data for the work, revising the manuscript critically for important intellectual content, and final approval of the manuscript.

Kiana Kalani: Substantial contributions to the conception of the project, drafting the manuscript, and final approval of the manuscript.

Kamiar Zomorodian: Design of the work, analysis, and interpretation of data for the work, drafting the work, and final approval of the manuscript.

Elham Shirazi Tehrani: Analysis and interpretation of data for the work, revising the manuscript critically for important intellectual content, and final approval of the manuscript.

Corresponding author

Correspondence to Negar Firouzabadi.

Ethics declarations

This study was approved by the local committee for ethics of medical experiments on human subjects of Shiraz University of Medical Sciences and carried out in accordance with the Code of Ethics of the World Medical Association (Declaration of Helsinki) and Uniform Requirements for manuscripts submitted to biomedical journals.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Firouzabadi, D., Firouzabadi, N., Kalani, K. et al. Response to sertraline is influenced by GNβ3 gene G-350A variant in patients with major depressive disorder. Eur J Clin Pharmacol 75, 189–194 (2019). https://doi.org/10.1007/s00228-018-2577-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-018-2577-3

Keywords

Navigation