Skip to main content

Advertisement

Log in

Effects of clotrimazole on tacrolimus pharmacokinetics in patients with heart transplants with different CYP3A5 genotypes

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to investigate the effects of clotrimazole on the pharmacokinetics of tacrolimus in Japanese patients with heart transplants with different CYP3A5 genotypes.

Methods

Twenty-six patients who underwent heart transplantation between June 2012 and July 2017 were enrolled in this retrospective study. The CYP3A5 (rs776746; CYP3A5*3) genotype was determined after monitoring and analysing tacrolimus blood concentrations. The pharmacokinetic profile of tacrolimus was examined before and after the discontinuation of clotrimazole and in patients with different CYP3A5 genotypes.

Results

The CYP3A5*1/*1, *1/*3 and *3/*3 genotypes were detected in 2, 8 and 16 patients, respectively. After clotrimazole was discontinued, the CYP3A5 expresser (CYP3A5*1/*1 or *1/*3) group had a 3.3-fold median increase in apparent oral clearance of tacrolimus (0.27 vs. 0.89 L/h/kg, P = 0.002) compared with the CYP3A5 non-expresser (CYP3A5*3/*3) group with a 2.2-fold median increase (0.18 vs. 0.39 L/h/kg, P < 0.0001). Significant correlations were observed between C0 and area under the concentration–time curve (AUC0–12) of tacrolimus after the discontinuation of clotrimazole in the CYP3A5 expresser and non-expresser groups, respectively (R2 = 0.49 and 0.42, all P < 0.05), but not before the discontinuation of clotrimazole.

Conclusion

The effects of clotrimazole on tacrolimus pharmacokinetics in the CYP3A5 expresser patients were significantly greater than those in the CYP3A5 non-expresser patients. In addition, clotrimazole disturbed the correlation between C0 and AUC0–12 of tacrolimus. Careful dose adjustment of tacrolimus based on CYP3A5 genotypes may be beneficial for the patients with heart transplants who are concomitantly treated with clotrimazole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Margreiter R (2002) Efficacy and safety of tacrolimus compared with ciclosporin microemulsion in renal transplantation: a randomised multicentre study. Lancet 359:741–746

    Article  CAS  PubMed  Google Scholar 

  2. Böttiger Y, Brattström C, Tydén G, Säwe J, Groth C (1999) Tacrolimus whole blood concentrations correlate closely to side-effects in renal transplant recipients. Br J Clin Pharmacol 48(3):445–448

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dai Y, Hebert M, Isoherranen N, Davis C, Marsh C, Shen D, Thummel K (2006) Effect of CYP3A5 polymorphism on tacrolimus metabolic clearance in vitro. Drug Metab Dispos 34(5):836–847

    Article  CAS  PubMed  Google Scholar 

  4. Staatz C, Taylor P, Tett S (2001) Low tacrolimus concentrations and increased risk of early acute rejection in adult renal transplantation. Nephrology Dialysis Transplantation 16(9):1905–1909

    Article  CAS  Google Scholar 

  5. Glotzbecker B, Duncan C, Alyea E 3rd, Campbell B, Soiffer R (2012) Important drug interactions in hematopoietic stem cell transplantation: what every physician should know. Biol Blood Marrow Transplant 18(7):989–1006

    Article  CAS  PubMed  Google Scholar 

  6. Sattler M, Guengerich F, Yun C, Christians U, Sewing K (1992) Cytochrome P-450 3A enzymes are responsible for biotransformation of FK506 and rapamycin in man and rat. Drug Metab Dispos 20(5):753–761

    CAS  PubMed  Google Scholar 

  7. Iwasaki K (2007) Metabolism of tacrolimus (FK506) and recent topics in clinical pharmacokinetics. Drug metabolism Pharmacokinetics 22(5):328–335

    Article  CAS  PubMed  Google Scholar 

  8. Uesugi M, Masuda S, Katsura T, Oike F, Takada Y, Inui K (2006) Effect of intestinal CYP3A5 on postoperative tacrolimus trough levels in living-donor liver transplant recipients. Pharmacogenet Genomics 16(2):119–127

    Article  CAS  PubMed  Google Scholar 

  9. Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, Watkins P, Daly A, Wrighton S, Hall S, Maurel P, Relling M, Brimer C, Yasuda K, Venkataramanan R, Strom S, Thummel K, Boguski M, Schuetz E (2001) Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 27(4):383–391

    Article  CAS  PubMed  Google Scholar 

  10. Hiratsuka M, Takekuma Y, Endo N, Narahara K, Hamdy SI, Kishikawa Y, Matsuura M, Agatsuma Y, Inoue T, Mizugaki M (2002) Allele and genotype frequencies of CYP2B6 and CYP3A5 in the Japanese population. Eur J Clin Pharmacol 58(6):417–421

    Article  CAS  PubMed  Google Scholar 

  11. Staatz C, Goodman L, Tett S (2010) Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: part I. Clin Pharmacokinet 49(3):141–175

    Article  CAS  PubMed  Google Scholar 

  12. Saad A, DePestel D, Carver P (2006) Factors influencing the magnitude and clinical significance of drug interactions between azole antifungals and select immunosuppressants. Pharmacotherapy 26(12):1730–1744

    Article  CAS  PubMed  Google Scholar 

  13. Nara M, Takahashi N, Miura M, Niioka T, Kagaya H, Fujishima N, Saitoh H, Kameoka Y, Tagawa H, Hirokawa M, Sawada K (2013) Effect of itraconazole on the concentrations of tacrolimus and cyclosporine in the blood of patients receiving allogeneic hematopoietic stem cell transplants. Eur J Clin Pharmacol 69(6):1321–1329

    Article  CAS  PubMed  Google Scholar 

  14. Togashi M, Niioka T, Komatsuda A, Nara M, Okuyama S, Omokawa A, Abumiya M, Wakui H, Takahashi N, Miura M (2015) Effect of CYP3A5 and ABCB1 polymorphisms on the interaction between tacrolimus and itraconazole in patients with connective tissue disease. Eur J Clin Pharmacol 71(9):1091–1097

    Article  CAS  PubMed  Google Scholar 

  15. Lalan S, Abdel-Rahman S, Gaedigk A, Leeder JS, Warady BA, Dai H, Blowey D (2014) Effect of CYP3A5 genotype, steroids, and azoles on tacrolimus in a pediatric renal transplant population. Pediatr Nephrol 29(10):2039–2049

    Article  PubMed  Google Scholar 

  16. Yamashita T, Fujishima N, Miura M, Niioka T, Abumiya M, Shinohara Y, Ubukawa K, Nara M, Fujishima M, Kameoka Y, Tagawa H, Hirokawa M, Takahashi N (2016) Effects of CYP3A5 polymorphism on the pharmacokinetics of a once-daily modified-release tacrolimus formulation and acute kidney injury in hematopoietic stem cell transplantation. Cancer Chemother Pharmacol 78(1):111–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gombert M, duBouchet L, Aulicino T, Butt K (1987) A comparative trial of clotrimazole troches and oral nystatin suspension in recipients of renal transplants. Use in prophylaxis of oropharyngeal candidiasis. JAMA 258(18):2553–2555

    Article  CAS  PubMed  Google Scholar 

  18. Owens N, Nightingale C, Schweizer R, Schauer P, Dekker P, Quintiliani R (1984) Prophylaxis of oral candidiasis with clotrimazole troches. Arch Intern Med 144(2):290–293

    Article  CAS  PubMed  Google Scholar 

  19. El-Asmar J, Gonzalez R, Bookout R, Mishra A, Kharfan-Dabaja MA (2016) Clotrimazole troches induce supratherapeutic blood levels of sirolimus and tacrolimus in an allogeneic hematopoietic cell-transplant recipient resulting in acute kidney injury. Hematol Oncol Stem Cell Ther 9(4):157–161

    Article  PubMed  Google Scholar 

  20. Mieles L, Venkataramanan R, Yokoyama I, Warty V, Starzl T (1991) Interaction between FK506 and clotrimazole in a liver transplant recipient. Transplantation 52(6):1086–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Choy M (2010) Tacrolimus interaction with clotrimazole: a concise case report and literature review. P & T : a peer-Reviewed J Formulary Management 35(10):568–569

    Google Scholar 

  22. Vasquez E, Pollak R, Benedetti E (2001) Clotrimazole increases tacrolimus blood levels: a drug interaction in kidney transplant patients. Clin Transpl 15(2):95–99

    Article  CAS  Google Scholar 

  23. Vasquez E, Shin G, Sifontis N, Benedetti E (2005) Concomitant clotrimazole therapy more than doubles the relative oral bioavailability of tacrolimus. Ther Drug Monit 27(5):587–591

    Article  CAS  PubMed  Google Scholar 

  24. Viesselmann CW, Descourouez JL, Jorgenson MR, Radke NA, Odorico JS (2016) Clinically significant drug interaction between clotrimazole and tacrolimus in pancreas transplant recipients and associated risk of allograft rejection. Pharmacotherapy 36(3):335–341

    Article  CAS  PubMed  Google Scholar 

  25. Cangemi G, Barco S, Bonifazio P, Maffia A, Agazzi A, Melioli G (2013) Comparison of antibody-conjugated magnetic immunoassay and liquid chromatography-tandem mass spectrometry for the measurement of cyclosporine and tacrolimus in whole blood. Int J Immunopathol Pharmacol 26(2):419–426

    Article  CAS  PubMed  Google Scholar 

  26. Pfeffer M (1984) Estimation of mean residence time from data obtained when multiple-dosing steady state has been reached. J Pharm Sci 73(6):854–856

    Article  CAS  PubMed  Google Scholar 

  27. Anglicheau D, Flamant M, Schlageter M, Martinez F, Cassinat B, Beaune P, Legendre C, Thervet E (2003) Pharmacokinetic interaction between corticosteroids and tacrolimus after renal transplantation. Nephrology Dialysis Transplantation 18(11):2409–2414

    Article  CAS  Google Scholar 

  28. Schiff J, Cole E, Cantarovich M (2007) Therapeutic monitoring of calcineurin inhibitors for the nephrologist. Clin J Am Soc Nephrol 2(2):374–384

    Article  CAS  PubMed  Google Scholar 

  29. Shord SS, Chan LN, Camp JR, Vasquez EM, Jeong HY, Molokie RE, Baum CL, Xie H (2010) Effects of oral clotrimazole troches on the pharmacokinetics of oral and intravenous midazolam. Br J Clin Pharmacol 69(2):160–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Samaranayake L, Keung Leung W, Jin L (2009) Oral mucosal fungal infections. Periodontology 49:39–59

    Article  Google Scholar 

  31. Liu M, Chen M, Yang Z (2017) Design of amphotericin B oral formulation for antifungal therapy. Drug Deliv 24(1):1–9

    Article  CAS  PubMed  Google Scholar 

  32. Paterson D, Singh N (1997) Interactions between tacrolimus and antimicrobial agents. Clinical Infectious Diseases: an official publication Infectious Diseases Soc Am 25(6):1430–1440

    Article  CAS  Google Scholar 

  33. Ohshima T, Miyakawa Y, Watanabe T, Ohyama K (2003) Effect of amphotericin B dilution with various beverages on the survival of Candida albicans cells. Kansenshōgaku zasshi J Japanese Assoc Infectious Diseases 77(1):29–33

    Google Scholar 

  34. Lyu X, Zhao C, Yan ZM, Hua H (2016) Efficacy of nystatin for the treatment of oral candidiasis: a systematic review and meta-analysis. Drug Des Devel Ther 10:1161–1171

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nakatani T, Fukushima N, Ono M, Saiki Y, Matsuda H, Nunoda S, Sawa Y, Isobe M (2016) The Registry Report of Heart Transplantation in Japan (1999-2014). Circ J 80(1):44–50

    Article  PubMed  Google Scholar 

  36. Shi WL, Tang HL, Zhai SD (2015) Effects of the CYP3A4*1B genetic polymorphism on the pharmacokinetics of tacrolimus in adult renal transplant recipients: a meta-analysis. PLoS One 10(6):e0127995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Santoro A, Felipe C, Tedesco-Silva H, Medina-Pestana J, Struchiner C, Ojopi E, Suarez-Kurtz G (2011) Pharmacogenetics of calcineurin inhibitors in Brazilian renal transplant patients. Pharmacogenomics 12(9):1293–1303

    Article  CAS  PubMed  Google Scholar 

  38. Lamba J, Lin Y, Schuetz E, Thummel K (2002) Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev 54(10):1271–1294

    Article  CAS  PubMed  Google Scholar 

  39. Balram C, Zhou Q, Cheung Y, Lee E (2003) CYP3A5*3 and *6 single nucleotide polymorphisms in three distinct Asian populations. Eur J Clin Pharmacol 59(2):123–126

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all the patients who participated in this study.

Funding

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Participated in research design: Uno, Wada, Matsuda, Terada and Takada

Conducted experiments and clinical study: Uno, Wada, Matsuda, Terada and Takada

Performed data analysis: Uno, Wada, Kawase and Takada

Wrote or contributed to the writing of the manuscript: Uno, Wada, Terakawa, Oita, Kawase, Yokoyama, Hosomi and Takada

Corresponding author

Correspondence to Mitsutaka Takada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This study was approved by the local ethic committee of the National Cerebral and Cardiovascular Center.

Informed consent

An informed consent was obtained from all individual participants included in the study.

Additional information

This study was conducted in the Department of Pharmacy, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, Japan.

Electronic supplementary material

ESM 1

(DOCX 107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uno, T., Wada, K., Matsuda, S. et al. Effects of clotrimazole on tacrolimus pharmacokinetics in patients with heart transplants with different CYP3A5 genotypes. Eur J Clin Pharmacol 75, 67–75 (2019). https://doi.org/10.1007/s00228-018-2558-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-018-2558-6

Keywords

Navigation