Skip to main content
Log in

Population pharmacokinetics of vancomycin and AUC-guided dosing in Chinese neonates and young infants

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objectives

To develop a population pharmacokinetic (PK) model for vancomycin in Chinese neonates and infants less than 2 months of age (young infants) with a wide gestational age range, in order to determine the appropriate dosing regimen for this population.

Methods

We performed a retrospective chart review of patients from the neonatal intensive care unit (NICU) at Children’s Hospital of Fudan University to identify neonates and young infants treated with vancomycin from May 2014 to May 2017. Vancomycin concentrations and covariates were utilized to develop a one-compartment model with first-order elimination. The predictive performance of the final model was assessed by both internal and external evaluation, and the relationship between trough concentration and AUC0–24 was investigated. Monte Carlo simulations were performed to design an initial dosing schedule targeting an AUC0–24 ≥ 400.

Results

The analysis included a total of 330 concentration–time data points from 213 neonates and young infants with gestational age (GA) and body weight of 25–42 weeks and 0.88–5.1 kg, respectively. Body weight, postmenstrual age (PMA) and serum creatinine level were found to be important factors explaining the between-subject variability in vancomycin PK parameters for this population. Both internal and external evaluation supported the prediction of the final vancomycin PK model. The typical population parameter estimates of clearance and distribution volume for an infant weighing 2.73 kg with a PMA of 39.8 weeks and serum creatinine of 0.28 mg/dL were 0.103 L/h/kg and 0.58 L/kg, respectively. Although vancomycin serum trough concentrations were predictive of the AUC, considerable variability was observed in the achievement of an AUC0–24/MIC of ≥400. For MIC values of ≤0.5 mg/L, AUC0–24/MIC ≥400 was achieved for 95% of the newborn infants with vancomycin troughs of 5–10 mg/L. When the MIC increased to 1 mg/L, only 15% of the patients with troughs of 5–10 mg/L achieved AUC0–24/MIC ≥400. For MIC values of 2 mg/L, no infants achieved the target. Simulations predicted that a dose of at least 14 and 15 mg/kg every 12 h was required to attain the target AUC0–24 ≥ 400 in 90% of infants with a PMA of 30–32 and 32–34 weeks, respectively. This target was also achieved in 93% of simulated infants in the oldest PMA groups (36–38 and 38–40 weeks, respectively) when the dosing interval was extended to 8 h. For infants with a PMA ≥44 weeks, a dose increase to 18 mg/kg every 8 h was needed. The trough concentrations of 5–15 mg/L were highly predictive of an AUC0–24 of ≥400 when treating invasive MRSA infections with an MIC of ≤1 mg/L.

Conclusions

The PK parameters for vancomycin in Chinese infants younger than 2 months of age were estimated using the model developed herein. This model has been used to predict individualized dosing regimens in this vulnerable population in our hospital. A large external evaluation of our model will be conducted in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Clark RH, Bloom BT, Spitzer AR, Gerstmann DR (2006) Reported medication use in the neonatal intensive care unit: data from a large national data set. Pediatrics 117(6):1979–1987

    Article  PubMed  Google Scholar 

  2. Jacqz-Aigrain E, Zhao W, Sharland M, van den Anker JN (2013) Use of antibacterial agents in the neonate: 50 years of experience with vancomycin administration. Semin Fetal Neonatal Med 18(1):28–34

    Article  PubMed  Google Scholar 

  3. Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE (2003) Developmental pharmacology-drug disposition, action, and therapy in infants and children. N Engl J Med 349(12):1157–1167

    Article  PubMed  CAS  Google Scholar 

  4. Stockmann C, Roberts JK, Yu T, Constance JE, Knibbe CA, Spigarelli MG, Sherwin CM (2014) Vancomycin pharmacokinetic models: informing the clinical management of drug-resistant bacterial infections. Expert Rev Anti-Infect Ther 12(11):1371–1388

    Article  PubMed  CAS  Google Scholar 

  5. Rybak M, Lomaestro B, Rotschafer JC, Moellering R Jr, Craig W, Billeter M, Dalovisio JR, Levine DP (2009) Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm 66(1):82–98

    Article  PubMed  CAS  Google Scholar 

  6. Rybak MJ (2006) Pharmacodynamics: relation to antimicrobial resistance. Am J Med 119(6 Suppl 1):S37–S44

    Article  PubMed  CAS  Google Scholar 

  7. Rybak MJ (2006) The pharmacokinetic and pharmacodynamic properties of vancomycin. Clin Infect Dis 42(Suppl 1):S35–S39

    Article  PubMed  CAS  Google Scholar 

  8. Craig WA (2003) Basic pharmacodynamics of antibacterials with clinical applications to the use of beta-lactams, glycopeptides, and linezolid. Infect Dis Clin N Am 17(3):479–501

    Article  Google Scholar 

  9. Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, Kaplan SL, Karchmer AW, Levine DP, Murray BE, J Rybak M, Talan DA, Chambers HF, Infectious Diseases Society of America (2011) Clinical practice guidelines by the infectious diseases society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis 52(3):e18–e55

    Article  PubMed  Google Scholar 

  10. Camaione L, Elliott K, Mitchell-Van Steele A, Lomaestro B, Pai MP (2013) Vancomycin dosing in children and young adults: back to the drawing board. Pharmacotherapy 33(12):1278–1287

    Article  PubMed  CAS  Google Scholar 

  11. Gordon CL, Thompson C, Carapetis JR, Turnidge J, Kilburn C, Currie BJ (2012) Trough concentrations of vancomycin: adult therapeutic targets are not appropriate for children. Pediatr Infect Dis J 31(12):1269–1271

    Article  PubMed  Google Scholar 

  12. Frymoyer A, Guglielmo BJ, Hersh AL (2013) Desired vancomycin trough serum concentration for treating invasive methicillin-resistant staphylococcal infections. Pediatr Infect Dis J 32(10):1077–1079

    Article  PubMed  Google Scholar 

  13. Lanke S, Yu T, Rower JE, Balch AH, Korgenski EK, Sherwin CM (2017) AUC-guided vancomycin dosing in adolescent patients with suspected sepsis. J Clin Pharmacol 57(1):77–84

    Article  PubMed  CAS  Google Scholar 

  14. Frymoyer A, Hersh AL, El-Komy MH, Gaskari S, Su F, Drover DR, Van Meurs K (2014) Association between vancomycin trough concentration and area under the concentration-time curve in neonates. Antimicrob Agents Chemother 58(11):6454–6461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Le J, Bradley JS, Murray W, Romanowski GL, Tran TT, Nguyen N, Cho S, Natale S, Bui I, Tran TM, Capparelli EV (2013) Improved vancomycin dosing in children using area under the curve exposure. Pediatr Infect Dis J 32(4):e155–e163

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hahn A, Frenck RW Jr, Zou Y, Vinks AA (2015) Validation of a pediatric population pharmacokinetic model for vancomycin. Ther Drug Monit 37(3):413–416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Janssen EJ, Välitalo PA, Allegaert K, de Cock RF, Simons SH, Sherwin CM, Mouton JW, van den Anker JN, Knibbe CA (2015) Towards rational dosing algorithms for vancomycin in neonates and infants based on population pharmacokinetic modeling. Antimicrob Agents Chemother 60(2):1013–1021

    Article  PubMed  CAS  Google Scholar 

  18. Samardzic J, Allegaert K, Wilbaux M, Pfister M, van den Anker JN (2016) Quantitative clinical pharmacology practice for optimal use of antibiotics during the neonatal period. Expert Opin Drug Metab Toxicol 12(4):367–375

    Article  PubMed  CAS  Google Scholar 

  19. Sheiner LB, Rosenberg B, Melmon KL (1972) Modelling of individual pharmacokinetics for computer-aided drug dosage. Comput Biomed Res 5(5):411–459

    Article  PubMed  CAS  Google Scholar 

  20. Schwartz GJ, Feld LG, Langford DJ (1984) A simple estimate of glomerular filtration rate in full-term infants during the first year of life. J Pediatr 104(6):849–854

    Article  PubMed  CAS  Google Scholar 

  21. Thomson Reuters clinical editorial staff (2011) Neofax 2011, 24th ed.

  22. Marqués-Miñana MR, Saadeddin A, Peris JE (2010) Population pharmacokinetic analysis of vancomycin in neonates. A new proposal of initial dosage guideline. Br J Clin Pharmacol 70(5):713–720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Anderson BJ, Allegaert K, Van den Anker JN, Cossey V, Holford NH (2007) Vancomycin pharmacokinetics in preterm neonates and the prediction of adult clearance. Br J Clin Pharmacol 63(1):75–84

    Article  PubMed  CAS  Google Scholar 

  24. Ette EI, Williams PJ, Kim YH, Lane JR, Liu MJ, Capparelli EV (2003) Model appropriateness and population pharmacokinetic modeling. J Clin Pharmacol 43(6):610–623

    Article  PubMed  CAS  Google Scholar 

  25. Comets E, Brendel K, Mentré F (2008) Computing normalised prediction distribution errors to evaluate nonlinear mixed-effect models: the npde add-on package for R. Comput Methods Prog Biomed 90(2):154–166

    Article  Google Scholar 

  26. van der Meer AF, Marcus MA, Touw DJ, Proost JH, Neef C (2011) Optimal sampling strategy development methodology using maximum a posteriori Bayesian estimation. Ther Drug Monit 33(2):133–146

    PubMed  Google Scholar 

  27. Vinks AA (2011) Important role of population pharmacokinetic/pharmacodynamic modeling in pediatric therapeutics. J Pediatr 159(3):361–363

    Article  PubMed  Google Scholar 

  28. Anderson BJ, Holford NH (2011) Tips and traps analyzing pediatric PK data. Paediatr Anaesth 21(3):222–237

    Article  PubMed  Google Scholar 

  29. Vieux R, Hascoet JM, Merdariu D, Fresson J, Guillemin F (2010) Glomerular filtration rate reference values in very preterm infants. Pediatrics 125(5):e1186–e1192

    Article  PubMed  Google Scholar 

  30. Capparelli EV, Lane JR, Romanowski GL, McFeely EJ, Murray W, Sousa P, Kildoo C, Connor JD (2001) The influences of renal function and maturation on vancomycin elimination in newborns and infants. J Clin Pharmacol 41(9):927–934

    Article  PubMed  CAS  Google Scholar 

  31. Golper TA, Noonan HM, Elzinga L, Gilbert D, Brummett R, Anderson JL, Bennett WM (1988) Vancomycin pharmacokinetics, renal handling, and nonrenal clearances in normal human subjects. Clin Pharmacol Ther 43(5):565–570

    Article  PubMed  CAS  Google Scholar 

  32. Marsot A, Boulamery A, Bruguerolle B, Simon N (2012) Vancomycin: a review of population pharmacokinetic analyses. Clin Pharmacokinet 51(1):1–13

    Article  PubMed  CAS  Google Scholar 

  33. Ringenberg T, Robinson C, Meyers R, Degnan L, Shah P, Siu A, Sturgill M (2015) Achievement of therapeutic vancomycin trough serum concentrations with empiric dosing in neonatal intensive care unit patients. Pediatr Infect Dis J 34(7):742–747

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiping Li.

Electronic supplementary material

ESM 1

(DOCX 635 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wu, D., Dong, M. et al. Population pharmacokinetics of vancomycin and AUC-guided dosing in Chinese neonates and young infants. Eur J Clin Pharmacol 74, 921–930 (2018). https://doi.org/10.1007/s00228-018-2454-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-018-2454-0

Keywords

Navigation