Skip to main content

Advertisement

Log in

Pharmacokinetic and pharmacodynamic re-evaluation of a genetic-guided warfarin trial

  • Pharmacogenetics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

A previous trial failed to demonstrate the superiority of a demographic-genetic algorithm in predicting warfarin (W) dose over a standard clinical approach. The purpose of the present study is to re-analyse the results in subgroups of patients with differing baseline sensitivity to W, integrated with additional pharmacokinetic data.

Methods

The original trial allocated 180 treatment-naïve patients with non-valvular atrial fibrillation to a control arm (CTL, n = 92) or a genetic-guided arm (GEN, n = 88). Before starting anticoagulation treatment, all patients were genotyped for CYP2C9, VKORC1 and CYP4F2 variants and classified into four quartiles (Q1, Q2, Q3, Q4) according to the algorithm-predicted W maintenance dose. International normalised ratios (INR) and plasma concentrations of S-warfarin [S-W]s and R-warfarin [R-W]s were measured at baseline and on days 5, 7, 9, 12, 15 and 19 of therapy.

Results

In the lowest dose quartile (Q1), the number of INRs > 3 and mean INR values on days 5 and 7 were significantly higher in CTL than in GEN. In Q3 and Q4, the mean INR values reached therapeutic level (> 2) 2 days later in CTL than in GEN. During follow-up, the mean time courses of INRs and [S-W]s in GEN were remarkably stable in all dose quartiles. Thus, mean changes from starting to final doses were significantly smaller in GEN than in CTL. Plasma concentrations of R-W (a partially active enantiomer) steadily increased from day 5 to day 19 in all Qs in both CTL and GEN, except in the Q1 CTL group, due to the marked dose reduction required.

Conclusions

This analysis showed that the demographic-genetic algorithm used to predict the W dose can identify patients with differing degrees of sensitivity to W and to ‘normalise’ their average anticoagulant responses. The progressive rise in [R-W]s throughout the 19-day follow-up indicates that the (partial) contribution of R-W to the W anticoagulant effect changes continually during the early phase of treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wadelius M, Chen LY, Lindh JD, Eriksson N, Ghori MJ, Bumpstead S, Holm L, McGinnis R, Rane A, Deloukas P (2009) The largest prospective warfarin-treated cohort supports genetic forecasting. Blood 113(4):784–792. https://doi.org/10.1182/blood-2008-04-149070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. International Warfarin Pharmacogenetics Consortium, Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, Lee MT, Limdi NA, Page D, Roden DM, Wagner MJ, Caldwell MD, Johnson JA (2009) Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med 360:753–764. https://doi.org/10.1056/NEJMoa0809329

    Article  Google Scholar 

  3. Anderson JL, Horne BD, Stevens SM, Grove AS, Barton S, Nicholas ZP, Kahn SF, May HT, Samuelson KM, Muhlestein JB, Carlquist JF, Investigators C-G (2007) Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation 116(22):2563–2570. https://doi.org/10.1161/CIRCULATIONAHA.107.737312

    Article  CAS  PubMed  Google Scholar 

  4. Stergiopoulos K, Brown DL (2014) Genotype-guided vs clinical dosing of warfarin and its analogues: meta-analysis of randomized clinical trials. JAMA Intern Med 174(8):1330–1338. https://doi.org/10.1001/jamainternmed.2014.2368

    Article  PubMed  Google Scholar 

  5. Tang HL, Shi WL, Li XG, Zhang T, Zhai SD, Xie HG (2015) Limited clinical utility of genotype-guided warfarin initiation dosing algorithms versus standard therapy: a meta-analysis and trial sequential analysis of 11 randomized controlled trials. Pharmacogenomics J 15(6):496–504. https://doi.org/10.1038/tpj.2015.16

    Article  CAS  PubMed  Google Scholar 

  6. Li X, Yang J, Wang X, Xu Q, Zhang Y, Yin T (2015) Clinical benefits of pharmacogenetic algorithm-based warfarin dosing: meta-analysis of randomized controlled trials. Thromb Res 135(4):621–629. https://doi.org/10.1016/j.thromres.2015.01.018

    Article  CAS  PubMed  Google Scholar 

  7. Shi C, Yan W, Wang G, Wang F, Li Q, Lin N (2015) Pharmacogenetics-based versus conventional dosing of warfarin: a meta-analysis of randomized controlled trials. PLoS One 10(12):e0144511. https://doi.org/10.1371/journal.pone.0144511

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dahal K, Sharma SP, Fung E, Lee J, Moore JH, Unterborn JN, Williams SM (2015) Meta-analysis of randomized controlled trials of genotype-guided vs standard dosing of warfarin. Chest 148(3):701–710. https://doi.org/10.1378/chest.14-2947

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang ZQ(1), Zhang R, Zhang PP, Liu XH, Sun J, Wang J, Feng XF, Lu QF, Li YGJ (2015) Pharmacogenetics-based warfarin dosing algorithm decreases time to stable anticoagulation and the risk of major hemorrhage: an updated meta-analysis of randomized controlled trials. J Cardiovasc Pharmacol 65:364–370. https://doi.org/10.1097/FJC.0000000000000204

    Article  CAS  PubMed  Google Scholar 

  10. Pengo V, Zambon CF, Fogar P, Padoan A, Nante G, Pelloso M, Moz S, Frigo AC, Groppa F, Bozzato D, Tiso E, Gnatta E, Denas G, Padayattil Jose S, Padrini R, Basso D, Plebani M (2015) A randomized trial of pharmacogenetic warfarin dosing in naïve patients with non-valvular atrial fibrillation. PLoS One 10(12):e0145318. https://doi.org/10.1371/journal.pone.0145318

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zambon CF, Pengo V, Padrini R, Basso D, Schiavon S, Fogar P, Nisi A, Frigo AC, Moz S, Pelloso M, Plebani M (2011) VKORC1, CYP2C9 and CYP4F2 genetic-based algorithm for warfarin dosing: an Italian retrospective study. Pharmacogenomics 12(1):15–25. https://doi.org/10.2217/pgs.10.162

    Article  CAS  PubMed  Google Scholar 

  12. Pengo V, Biasiolo A, Pegoraro C (2001) A simple scheme to initiate oral anticoagulant treatment in outpatients with non-rheumatic atrial fibrillation. Am J Cardiol 88(10):1214–1216. https://doi.org/10.1016/S0002-9149(01)02069-0

    Article  CAS  PubMed  Google Scholar 

  13. Manotti C, Moia M, Palareti G, Pengo V, Ria L, Dettori AG (2001) Effect of computer-aided management on the quality of treatment in anticoagulated patients: a prospective, randomized, multicenter trial of APROAT (Automated PRogram for Oral Anticoagulant Treatment). Haematologica 86(10):1060–1070

    CAS  PubMed  Google Scholar 

  14. Scordo MG, Pengo V, Spina E, Dahl ML, Gusella M, Padrini R (2002) Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Clin Pharmacol Ther 72(6):702–710. https://doi.org/10.1067/mcp.2002.129321

    Article  CAS  PubMed  Google Scholar 

  15. Rosendaal FR, Cannegieter SC, van der Meer FJ, Briët E (1993) A method to determine the optimal intensity of oral anticoagulant therapy. Thromb Haemost 69(3):236–239

    CAS  PubMed  Google Scholar 

  16. Heneghan C, Tyndel S, Banhhead C, Wan Y, Keeling D, Perera R, Ward A (2010) Optimal loading dose for the initiation of warfarin: a systematic review. BMC Cardiovasc Disord 10(1):18. https://doi.org/10.1186/1471-2261-10-18

    Article  PubMed  PubMed Central  Google Scholar 

  17. Padrini R, Quintieri L (2017) R-warfarin anticoagulant effect. Br J Clin Pharmacol 83(10):2303–2304. https://doi.org/10.1111/bcp.13300

    Article  CAS  PubMed  Google Scholar 

  18. Maddison J, Somogyi AA, Jensen BP, James HM, Gentgall M, Rolan PE (2013) The pharmacokinetics and pharmacodynamics of single dose (R)- and (S)-warfarin administered separately and together: relationship to VKORC1 genotype. Br J Clin Pharmacol 75(1):208–216. https://doi.org/10.1111/j.1365-2125.2012.04335.x

    Article  CAS  PubMed  Google Scholar 

  19. Ferrari M, Pengo V, Barolo M, Bezzo F, Padrini R (2017) Assessing the relative potency of (S)- and (R)-warfarin with a new PK-PD model, in relation to VKORC1 genotypes. Eur J Clin Pharmacol 73(6):699–707. https://doi.org/10.1007/s00228-017-2248-9

    Article  CAS  PubMed  Google Scholar 

  20. Breckenridge A, Orme M, Wesseling H, Lewis RJ, Gibbons R (1974) Pharmacokinetics and pharmacodynamics of the enantiomers of warfarin in man. Clin Pharmacol Ther 15(4):424–430. https://doi.org/10.1002/cpt1974154424

    Article  CAS  PubMed  Google Scholar 

  21. O’Reilly RA (1974) Studies on the optical enantiomorphs of warfarin in man. Clin Pharmacol Ther 16(2):348–354. https://doi.org/10.1002/cpt1974162348

    Article  PubMed  Google Scholar 

  22. Goodman & Gilman’s (2011) The pharmacological basis of therapeutics, 12th edn. McGraw Hill, New York

    Google Scholar 

  23. Hamberg AK, Dahl ML, Barban M, Scordo MG, Wadelius M, Pengo V, Padrini R, Jonsson EN (2007) A PK-PD model for predicting the impact of age, CYP2C9, and VKORC1 genotype on individualization of warfarin therapy. Clin Pharmacol Ther 81(4):529–538. https://doi.org/10.1038/sj.clpt.6100084

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Drs Giovanni Nante, Enrico Tiso, Gentian Denas and Seena Padayattil Jose for their help in collecting patients’ data.

Funding

This study was funded by the University of Padova, Italy (‘fondi DOR’, 2016).

Author information

Authors and Affiliations

Authors

Contributions

Concept of study: CF Zambon, V Pengo, M Plebani and R Padrini.

Acquisition of clinical data: V Pengo, P Fogar, S Moz and D Bozzato.

Genotyping: CF Zambon, S Moz and A Padoan.

Drug assays: G De Rosa and F Groppa.

Corresponding author

Correspondence to Roberto Padrini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The original study was approved by the Ethics Committee of Azienda-ULSS 16, Padova Protocol no. 8793. All procedures in this study were carried out according to the 1964 Helsinki Declaration and its later amendments.

Appendix

Appendix

Loading dose algorithm

The personalised loading dose (LD) was calculated with the standard formula for the one-compartment pharmacokinetic model:

$$ \mathrm{LD}\ \left(\mathrm{mg}\right)=\mathrm{volume}\ \mathrm{of}\ \mathrm{distribution}\ \left(\mathrm{L}\right)\times \mathrm{target}\ \mathrm{steady}\hbox{-} \mathrm{state}\ \mathrm{plasma}\ \mathrm{concentration}\ \left(\mathrm{mg}/\mathrm{L}\right). $$

The volume of distribution was estimated according to body weight (0.14 L/Kg) [22].

The ideal steady-state plasma concentration (Css) target, which should theoretically produce an INR in the centre of the therapeutic range (2.5), was calculated on the basis of the VKORC1 genotype according to a PK-PD model described elsewhere [23], as follows:

  1. (a)

    0.25 mg/mL for VKORC1 AA;

  2. (b)

    0.34 mg/mL for VKORC1 GA;

  3. (c)

    0.52 mg/mL for VKORC1 GG.

Maintenance dose algorithm

The estimated weekly maintenance dose (MD) was [11]:

$$ \mathrm{MD}\ \left(\mathrm{mg}/\mathrm{week}\right)={\left[7.39764\hbox{--} \left(0.02734\times \mathrm{age}\right)+\left(1.06287\times \mathrm{BSA}\right)\hbox{--} \left(1.04468\ \mathrm{for}\ VKORC1\ AG\right)\hbox{--} \left(2.12117\ \mathrm{for}\ VKORC1\ AA\right)\hbox{--} \left(0.78983\ \mathrm{for}\ CYP 2C{9}^{\ast }{1}^{\ast } 2\right)\hbox{--} \left(1.17138\ \mathrm{for}\ CYP 2{C9}^{\ast }{1}^{\ast } 3\right)\hbox{--} \left(1.81292\ \mathrm{for}\ CYP 2{C9}^{\ast }{2}^{\ast } 2\ {\mathrm{or}}^{\ast }{2}^{\ast } 3\ {\mathrm{or}}^{\ast }{3}^{\ast } 3\right)\hbox{--} \left(0.46723\ \mathrm{for}\ CYP 4{F2}^{\ast }{1}^{\ast } 3\right)\hbox{--} \left(0.71528\ \mathrm{for}\ CYP 4{F2}^{\ast }{1}^{\ast } 1\right)\right]}^2 $$

where age is entered as years; BSA (body surface area) is calculated as weight(kg)0.425 × height(cm)0.725/139.2. VKORC1 AG, VKORC1 AA, CYP2C9*1*2, CYP2C9 *1*3, CYP2C9 *2*2 or *2*3 or *3*3, CYP4F2 *1*3 and CYP4F2 *1*1 are coded 0 if absent and 1 if present.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zambon, C.F., Pengo, V., Moz, S. et al. Pharmacokinetic and pharmacodynamic re-evaluation of a genetic-guided warfarin trial. Eur J Clin Pharmacol 74, 571–582 (2018). https://doi.org/10.1007/s00228-018-2422-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-018-2422-8

Keywords

Navigation