Skip to main content

Advertisement

Log in

Antineoplastic agent busulfan regulates a network of genes related to coagulation and fibrinolysis

  • Pharmacodynamics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Hepatic veno-occlusive disease (HVOD) is one of the major complications following hematopoietic stem cell transplantation (HSCT). Although high-dose busulfan is associated with the development of HVOD, the underlying molecular mechanisms are still unknown.

Methods

Transcriptional gene regulation by busulfan was profiled using Affymetrix GeneChip® Human Genome U133 Plus 2.0 arrays. Messenger RNA (mRNA) expression of regulated genes was assessed by TaqMan real-time polymerase chain reaction (PCR), and protein expression and secretion was determined by enzyme-linked immunosorbent assay (ELISA) in cell supernatants, lysates, and patient plasma.

Results

Plasma levels of plasminogen activator inhibitor (PAI)-1 significantly increased 48 h after starting busulfan treatment IV in children preconditioned for HSCT. In vitro, busulfan significantly induced plasminogen activator inhibitor-1 (PAI-1) expression in endothelium-like ECV304 cells in a concentration- and time-dependent manner. Comparative transcriptional profiling of busulfan-treated and control ECV304 cells identified differential expression of genes related to coagulation and fibrinolysis, including tissue factor, tissue factor pathway inhibitor-1, protein S, thrombospondin-1, urokinase receptor, and PAI-1, as well as activin A and transforming growth factor beta 1 (TGF-β1). Ingenuity pathway analysis (IPA) suggested TGF-β1 as a central modulator of gene regulation by busulfan. Consequently, expression of tissue factor, urokinase receptor, and PAI-1 mRNA and PAI-1 protein secretion induced by busulfan were significantly reduced by the activin A/TGF-β1 inhibitor SB 431542 in ECV304 and primary endothelial cells.

Conclusions

This is the first report that directly relates busulfan exposure to antifibrinolytic activity by PAI-1 and hypercoagulation possibly mediated by members of the TGF-β1 family. This suggests further research to evaluate activin A and TGF-β1 as potential targets for HVOD treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

HSCT:

Hematopoietic stem cell transplantation

HVOD:

Hepatic veno-occlusive disease

PAI-1:

Plasminogen activator inhibitor-1

TGF-β1:

Transforming growth factor beta-1

TFPI-1:

Tissue factor pathway inhibitor-1

THBS-1:

Thrombospondin-1

References

  1. Carreras E, Bertz H, Arcese W, Vernant JP, Tomas JF, Hagglund H, Bandini G, Esperou H, Russell J, de la Rubia J, Di Girolamo G, Demuynck H, Hartmann O, Clausen J, Ruutu T, Leblond V, Iriondo A, Bosi A, Ben Bassat I, Koza V, Gratwohl A, Apperley JF (1998) Incidence and outcome of hepatic veno-occlusive disease after blood or marrow transplantation: a prospective cohort study of the European Group for Blood and Marrow Transplantation. European Group for Blood and Marrow Transplantation Chronic Leukemia Working Party. Blood 92:3599–3604

    PubMed  CAS  Google Scholar 

  2. McDonald GB, Hinds MS, Fisher LD, Schoch HG, Wolford JL, Banaji M, Hardin BJ, Shulman HM, Clift RA (1993) Veno-occlusive disease of the liver and multiorgan failure after bone marrow transplantation: a cohort study of 355 patients. Ann Intern Med 118:255–267

    PubMed  CAS  Google Scholar 

  3. Jones RJ, Lee KS, Beschorner WE, Vogel VG, Grochow LB, Braine HG, Vogelsang GB, Sensenbrenner LL, Santos GW, Saral R (1987) Venoocclusive disease of the liver following bone marrow transplantation. Transplantation 44:778–783

    Article  PubMed  CAS  Google Scholar 

  4. Park YD, Yasui M, Yoshimoto T, Chayama K, Shimono T, Okamura T, Inoue M, Yumura-Yagi K, Kawa-Ha K (1997) Changes in hemostatic parameters in hepatic veno-occlusive disease following bone marrow transplantation. Bone Marrow Transplant 19:915–920

    Article  PubMed  CAS  Google Scholar 

  5. Matsumoto T, Wada H, Nishiyama H, Hirano T, Sakakura M, Nishii K, Masuya M, Kageyama S, Tamaki S, Nakase K, Nobori T, Shiku H (2004) Hemostatic abnormalities and changes following bone marrow transplantation. Clin Appl Thromb Hemost 10:341–350

    Article  PubMed  Google Scholar 

  6. Sartori MT, Spiezia L, Cesaro S, Messina C, Paris M, Pillon M, Saggiorato G, Pagnan A, Girolami A, Zanesco L, Cella G (2005) Role of fibrinolytic and clotting parameters in the diagnosis of liver veno-occlusive disease after hematopoietic stem cell transplantation in a pediatric population. Thromb Haemost 93:682–689

    PubMed  CAS  Google Scholar 

  7. Lee JH, Lee KH, Kim S, Lee JS, Kim WK, Park CJ, Chi HS, Kim SH (1998) Relevance of proteins C and S, antithrombin III, von Willebrand factor, and factor VIII for the development of hepatic veno-occlusive disease in patients undergoing allogeneic bone marrow transplantation: a prospective study. Bone Marrow Transplant 22:883–888

    Article  PubMed  CAS  Google Scholar 

  8. Salat C, Holler E, Wolf C, Kolb HJ, Reinhardt B, Pihusch R, Kramling HJ, Heinemann V, Haller M, Hiller E (1997) Laboratory markers of veno-occlusive disease in the course of bone marrow and subsequent liver transplantation. Bone Marrow Transplant 19:487–490

    Article  PubMed  CAS  Google Scholar 

  9. Salat C, Holler E, Reinhardt B, Kolb HJ, Seeber B, Ledderose G, Mittermueller J, Duell T, Wilmanns W, Hiller E (1994) Parameters of the fibrinolytic system in patients undergoing BMT: elevation of PAI-1 in veno-occlusive disease. Bone Marrow Transplant 14:747–750

    PubMed  CAS  Google Scholar 

  10. Lee JH, Lee KH, Lee JH, Kim S, Seol M, Park CJ, Chi HS, Kang W, Kim ST, Kim WK, Lee JS (2002) Plasminogen activator inhibitor-1 is an independent diagnostic marker as well as severity predictor of hepatic veno-occlusive disease after allogeneic bone marrow transplantation in adults conditioned with busulphan and cyclophosphamide. Br J Haematol 118:1087–1094

    Article  PubMed  CAS  Google Scholar 

  11. Kluft C, Jie AF, Rijken DC, Verheijen JH (1988) Daytime fluctuations in blood of tissue-type plasminogen activator (t-PA) and its fast-acting inhibitor (PAI-1). Thromb Haemost 59:329–332

    PubMed  CAS  Google Scholar 

  12. Grimaudo V, Hauert J, Bachmann F, Kruithof EK (1988) Diurnal variation of the fibrinolytic system. Thromb Haemost 59:495–499

    PubMed  CAS  Google Scholar 

  13. Angleton P, Chandler WL, Schmer G (1989) Diurnal variation of tissue-type plasminogen activator and its rapid inhibitor (PAI-1). Circulation 79:101–106

    Article  PubMed  CAS  Google Scholar 

  14. Takada A, Takada Y, Urano T, Sakakibara K, Rydzewski A (1990) Fluctuations of euglobulin lysis time, tissue plasminogen activator, and free and total plasminogen activator inhibitor levels in plasma in daytime. Thromb Res 57:13–20

    Article  PubMed  CAS  Google Scholar 

  15. DeLeve LD, Shulman HM, McDonald GB (2002) Toxic injury to hepatic sinusoids: sinusoidal obstruction syndrome (veno-occlusive disease). Semin Liver Dis 22:27–42

    Article  PubMed  Google Scholar 

  16. DeLeve LD, McCuskey RS, Wang X, Hu L, McCuskey MK, Epstein RB, Kanel GC (1999) Characterization of a reproducible rat model of hepatic veno-occlusive disease. Hepatology 29:1779–1791

    Article  PubMed  CAS  Google Scholar 

  17. Cheuk DK, Wang P, Lee TL, Chiang AK, Ha SY, Lau YL, Chan GC (2007) Risk factors and mortality predictors of hepatic veno-occlusive disease after pediatric hematopoietic stem cell transplantation. Bone Marrow Transplant 40:935–944

    Article  PubMed  CAS  Google Scholar 

  18. Dirks WG, MacLeod RA, Drexler HG (1999) ECV304 (endothelial) is really T24 (bladder carcinoma): cell line cross- contamination at source. In Vitro Cell Dev Biol Anim 35:558–559

    Article  PubMed  CAS  Google Scholar 

  19. Oechtering D, Schiltmeyer B, Hempel G, Schwab M, Wurthwein G, Murdter T, Klingebiel T, Vormoor J, Gruhn B, Fleischack G, Boos J (2005) Toxicity and pharmacokinetics of i.v. busulfan in children before stem cell transplantation. Anticancer Drugs 16:337–344

    Article  PubMed  CAS  Google Scholar 

  20. Hempel G, Oechtering D, Lanvers-Kaminsky C, Klingebiel T, Vormoor J, Gruhn B, Boos J (2007) Cytotoxicity of dimethylacetamide and pharmacokinetics in children receiving intravenous busulfan. J Clin Oncol 25:1772–1778

    Article  PubMed  CAS  Google Scholar 

  21. Ritter CA, Sperker B, Grube M, Dressel D, Kunert-Keil C, Kroemer HK (2002) Overexpression of glutathione S-transferase A1-1 in ECV 304 cells protects against busulfan mediated G2-arrest and induces tissue factor expression. Br J Pharmacol 137:1100–1106

    Article  PubMed  CAS  Google Scholar 

  22. Dressel D, Ritter CA, Sperker B, Grube M, Maier T, Klingebiel T, Siegmund W, Beck JF, Kroemer HK (2003) Busulfan induces activin A expression in vitro and in vivo: a possible link to venous occlusive disease. Clin Pharmacol Ther 74:264–274

    Article  PubMed  CAS  Google Scholar 

  23. Gugliotta L, Catani L, Vianelli N, Gherlinzoni F, Miggiano MC, Bandini G, Tura S (1994) High plasma levels of tumor necrosis factor-alpha may be predictive of veno-occlusive disease in bone marrow transplantation. Blood 83:2385–2386

    PubMed  CAS  Google Scholar 

  24. Schots R, Kaufman L, Van RI, Ben Othman T, De Waele M, Van Camp B, Demanet C (2003) Proinflammatory cytokines and their role in the development of major transplant-related complications in the early phase after allogeneic bone marrow transplantation. Leukemia 17:1150–1156

    Article  PubMed  CAS  Google Scholar 

  25. Hezi-Yamit A, Wong PW, Bien-Ly N, Komuves LG, Prasad KS, Phillips DR, Sinha U (2005) Synergistic induction of tissue factor by coagulation factor Xa and TNF: evidence for involvement of negative regulatory signaling cascades. Proc Natl Acad Sci USA 102:12077–12082

    Article  PubMed  CAS  Google Scholar 

  26. Takahashi K, Sawasaki Y, Hata J, Mukai K, Goto T (1990) Spontaneous transformation and immortalization of human endothelial cells. In Vitro Cell Dev Biol 26:265–274

    Article  PubMed  CAS  Google Scholar 

  27. Kiessling F, Kartenbeck J, Haller C (1999) Cell-cell contacts in the human cell line ECV304 exhibit both endothelial and epithelial characteristics. Cell Tissue Res 297:131–140

    Article  PubMed  CAS  Google Scholar 

  28. Suda K, Rothen-Rutishauser B, Gunthert M, Wunderli-Allenspach H (2001) Phenotypic characterization of human umbilical vein endothelial (ECV304) and urinary carcinoma (T24) cells: endothelial versus epithelial features. In Vitro Cell Dev Biol Anim 37:505–514

    Article  PubMed  CAS  Google Scholar 

  29. Neuhaus W, Plattner VE, Wirth M, Germann B, Lachmann B, Gabor F, Noe CR (2008) Validation of in vitro cell culture models of the blood-brain barrier: tightness characterization of two promising cell lines. J Pharm Sci 97:5158–5175

    Article  PubMed  CAS  Google Scholar 

  30. Rozman C, Carreras E, Qian C, Gale RP, Bortin MM, Rowlings PA, Ash RC, Champlin RE, Henslee-Downey PJ, Herzig RH, Hinterberger W, Klein JP, Prentice HG, Reiffers J, Zwaan FE, Horowitz MM (1996) Risk factors for hepatic veno-occlusive disease following HLA-identical sibling bone marrow transplants for leukemia. Bone Marrow Transplant 17:75–80

    PubMed  CAS  Google Scholar 

  31. Barker CC, Butzner JD, Anderson RA, Brant R, Sauve RS (2003) Incidence, survival and risk factors for the development of veno-occlusive disease in pediatric hematopoietic stem cell transplant recipients. Bone Marrow Transplant 32:79–87

    Article  PubMed  CAS  Google Scholar 

  32. Pihusch R, Salat C, Schmidt E, Gohring P, Pihusch M, Hiller E, Holler E, Kolb HJ (2002) Hemostatic complications in bone marrow transplantation: a retrospective analysis of 447 patients. Transplantation 74:1303–1309

    Article  PubMed  Google Scholar 

  33. DeLeve LD (1996) Cellular target of cyclophosphamide toxicity in the murine liver: role of glutathione and site of metabolic activation. Hepatology 24:830–837

    Article  PubMed  CAS  Google Scholar 

  34. Czerwinski M, Gibbs JP, Slattery JT (1996) Busulfan conjugation by glutathione S-transferases alpha, mu, and pi. Drug Metab Dispos 24:1015–1019

    PubMed  CAS  Google Scholar 

  35. Ritter CA, Bohnenstengel F, Hofmann U, Kroemer HK, Sperker B (1999) Determination of tetrahydrothiophene formation as a probe of in vitro busulfan metabolism by human glutathione S-transferase A1-1: use of a highly sensitive gas chromatographic-mass spectrometric method. J Chromatogr B Biomed Sci Appl 730:25–31

    Article  PubMed  CAS  Google Scholar 

  36. DeLeve LD, Wang X (2000) Role of oxidative stress and glutathione in busulfan toxicity in cultured murine hepatocytes. Pharmacology 60:143–154

    Article  PubMed  CAS  Google Scholar 

  37. Bouligand J, Deroussent A, Simonnard N, Opolon P, Morizet J, Connault E, Daudigeos E, Re M, Paci A, Vassal G (2007) Induction of glutathione synthesis explains pharmacodynamics of high-dose busulfan in mice and highlights putative mechanisms of drug interaction. Drug Metab Dispos 35:306–314

    Article  PubMed  CAS  Google Scholar 

  38. Bertina RM (2009) The role of procoagulants and anticoagulants in the development of venous thromboembolism. Thromb Res 123(Suppl 4):S41–S45

    Article  PubMed  CAS  Google Scholar 

  39. Isenberg JS, Frazier WA, Roberts DD (2008) Thrombospondin-1: a physiological regulator of nitric oxide signaling. Cell Mol Life Sci 65:728–742

    Article  PubMed  CAS  Google Scholar 

  40. Rau JC, Beaulieu LM, Huntington JA, Church FC (2007) Serpins in thrombosis, hemostasis and fibrinolysis. J Thromb Haemost 5(Suppl 1):102–115

    Article  PubMed  CAS  Google Scholar 

  41. Lee JH, Lee KH, Choi SJ, Min YJ, Kim JG, Kim S, Lee JS, Kim SH, Park CJ, Chi HS, Kim WK (2000) Veno-occlusive disease of the liver after allogeneic bone marrow transplantation for severe aplastic anemia. Bone Marrow Transplant 26:657–662

    Article  PubMed  CAS  Google Scholar 

  42. Salat C, Holler E, Kolb HJ, Reinhardt B, Pihusch R, Wilmanns W, Hiller E (1997) Plasminogen activator inhibitor-1 confirms the diagnosis of hepatic veno-occlusive disease in patients with hyperbilirubinemia after bone marrow transplantation. Blood 89:2184–2188

    PubMed  CAS  Google Scholar 

  43. Pihusch M, Wegner H, Goehring P, Salat C, Pihusch V, Hiller E, Andreesen R, Kolb HJ, Holler E, Pihusch R (2005) Diagnosis of hepatic veno-occlusive disease by plasminogen activator inhibitor-1 plasma antigen levels: a prospective analysis in 350 allogeneic hematopoietic stem cell recipients. Transplantation 80:1376–1382

    Article  PubMed  CAS  Google Scholar 

  44. Nurnberger W, Michelmann I, Burdach S, Gobel U (1998) Endothelial dysfunction after bone marrow transplantation: increase of soluble thrombomodulin and PAI-1 in patients with multiple transplant-related complications. Ann Hematol 76:61–65

    Article  PubMed  CAS  Google Scholar 

  45. Kaleelrahman M, Eaton JD, Leeming D, Bowyer K, Taberner D, Chang J, Scarffe JH, Chopra R (2003) Role of plasminogen activator inhibitor-1 (PAI-1) levels in the diagnosis of BMT-associated hepatic veno-occlusive disease and monitoring of subsequent therapy with defibrotide (DF). Hematology 8:91–95

    Article  PubMed  CAS  Google Scholar 

  46. Smith LH, Dixon JD, Stringham JR, Eren M, Elokdah H, Crandall DL, Washington K, Vaughan DE (2006) Pivotal role of PAI-1 in a murine model of hepatic vein thrombosis. Blood 107:132–134

    Article  PubMed  CAS  Google Scholar 

  47. Lee JH, Choi SJ, Lee JH, Kim SE, Park CJ, Chi HS, Lee MS, Lee JS, Kim WK, Lee KH (2005) Decreased incidence of hepatic veno-occlusive disease and fewer hemostatic derangements associated with intravenous busulfan vs oral busulfan in adults conditioned with busulfan + cyclophosphamide for allogeneic bone marrow transplantation. Ann Hematol 84:321–330

    Article  PubMed  CAS  Google Scholar 

  48. Murase T, Anscher MS, Petros WP, Peters WP, Jirtle RL (1995) Changes in plasma transforming growth factor beta in response to high-dose chemotherapy for stage II breast cancer: possible implications for the prevention of hepatic veno-occlusive disease and pulmonary drug toxicity. Bone Marrow Transplant 15:173–178

    PubMed  CAS  Google Scholar 

  49. Pihusch V, Pihusch M, Penovici M, Kolb HJ, Hiller E, Pihusch R (2005) Transforming growth factor beta-1 released from platelets contributes to hypercoagulability in veno-occlusive disease following hematopoetic stem cell transplantation. Thromb Res 116:233–240

    Article  PubMed  CAS  Google Scholar 

  50. Ho VT, Revta C, Richardson PG (2008) Hepatic veno-occlusive disease after hematopoietic stem cell transplantation: update on defibrotide and other current investigational therapies. Bone Marrow Transplant 41:229–237

    Article  PubMed  CAS  Google Scholar 

  51. Coccheri S, Biagi G, Legnani C, Bianchini B, Grauso F (1988) Acute effects of defibrotide, an experimental antithrombotic agent, on fibrinolysis and blood prostanoids in man. Eur J Clin Pharmacol 35:151–156

    Article  PubMed  CAS  Google Scholar 

  52. Violi F, Ferro D, Saliola M, Quintarelli C, Basili S, Balsano F (1992) Effect of oral defibrotide on tissue-plasminogen activator and tissue-plasminogen activator inhibitor balance. Eur J Clin Pharmacol 42:379–383

    PubMed  CAS  Google Scholar 

  53. Cella G, Sbarai A, Mazzaro G, Motta G, Carraro P, Andreozzi GM, Hoppensteadt DA, Fareed J (2001) Tissue factor pathway inhibitor release induced by defibrotide and heparins. Clin Appl Thromb Hemost 7:225–228

    Article  PubMed  CAS  Google Scholar 

  54. Richardson PG, Murakami C, Jin Z, Warren D, Momtaz P, Hoppensteadt D, Elias AD, Antin JH, Soiffer R, Spitzer T, Avigan D, Bearman SI, Martin PL, Kurtzberg J, Vredenburgh J, Chen AR, Arai S, Vogelsang G, McDonald GB, Guinan EC (2002) Multi-institutional use of defibrotide in 88 patients after stem cell transplantation with severe veno-occlusive disease and multisystem organ failure: response without significant toxicity in a high-risk population and factors predictive of outcome. Blood 100:4337–4343

    Article  PubMed  CAS  Google Scholar 

  55. Richardson PG, Soiffer RJ, Antin JH, Uno H, Jin Z, Kurtzberg J, Martin PL, Steinbach G, Murray KF, Vogelsang GB, Chen AR, Krishnan A, Kernan NA, Avigan DE, Spitzer TR, Shulman HM, Di Salvo DN, Revta C, Warren D, Momtaz P, Bradwin G, Wei LJ, Iacobelli M, McDonald GB, Guinan EC (2010) Defibrotide for the treatment of severe hepatic veno-occlusive disease and multiorgan failure after stem cell transplantation: a multicenter, randomized, dose-finding trial. Biol Blood Marrow Transplant 16:1005–1017

    Article  PubMed  CAS  Google Scholar 

  56. Hassan M, Oberg G, Ericson K, Ehrsson H, Eriksson L, Ingvar M, Stone-Elander S, Thorell JO, Smedmyr B, Warne N (1992) In vivo distribution of [11C]-busulfan in cynomolgus monkey and in the brain of a human patient. Cancer Chemother Pharmacol 30:81–85

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Wilhelm-Sander Foundation, Munich, Germany (Grant No. 2003.103.1, HKK)

Statement of conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph A. Ritter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reimer, J., Bien, S., Ameling, S. et al. Antineoplastic agent busulfan regulates a network of genes related to coagulation and fibrinolysis. Eur J Clin Pharmacol 68, 923–935 (2012). https://doi.org/10.1007/s00228-011-1209-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-011-1209-y

Keywords

Navigation