Advertisement

Marine Biology

, Volume 139, Issue 1, pp 19–24 | Cite as

Development of the escape response in larval walleye pollock (Theragra chalcogramma)

  •  H. Sugisaki
  •  K. Bailey
  •  R. Brodeur

Abstract.

The development of the escape response of walleye pollock (Theragra chalcogramma) larvae from attacks by macrozooplanktonic and small-fish predators was quantified in laboratory experiments. Behavior was recorded using video cameras with silhouette illumination from infrared-emitting diodes and by visual observation. Laboratory-reared larvae of 1, 3, 8, 10, 12, 18, 22, 27, 42 days post-hatching, ranging in size from 4 mm to 10 mm total length, were used in the experiments. Even the youngest larvae were observed to exhibit a fast startle response. The percentage of successful larval escapes from the different predators increased as the larvae developed. Euphausiids (Thysanoessa raschii) and amphipods (Calliopiella pratti) often touched larvae but the larvae were usually able to escape and no successful captures of larvae over 22 days old were observed. Although successful escape from initial attacks by three-spine sticklebacks (Gasterosteus aculeatus) increased ontogenetically, sticklebacks were able to consume most larvae, even of the oldest age group, by repeated attacks. Day-old larvae had the lowest percent of escapes after encounters with jellyfish (Sarsia sp.), but the percentage of escapes increased dramatically for 3-day-old larvae. Escape speeds after an attack also increased with age, and tended to be higher after stickleback attacks and lower after jellyfish attacks. This study revealed that the escape response of larval pollock to attack by predators improves rapidly with development during the early larval stage.

Keywords

Larval Stage Visual Observation Startle Response Gasterosteus Aculeatus Escape Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag 2001

Authors and Affiliations

  •  H. Sugisaki
    • 1
  •  K. Bailey
    • 1
  •  R. Brodeur
    • 1
  1. 1.Alaska Fisheries Science Center, National Oceanic and Atmospheric Administration, 7600 Sand Point Way NE, Seattle, WA 98115–0070, USA

Personalised recommendations