Advertisement

Marine Biology

, Volume 129, Issue 4, pp 635–642 | Cite as

Effect of nutrient enrichment in the field on the biomass, growth and calcification of the giant clam Tridacna maxima

  •  Ambariyanto
  • O. Hoegh-Guldberg
Article

Abstract

Nutrients were added separately and combined to an initial concentration of 10 μM (ammonium) and/or 2 μM (phosphate) in a series of experiments carried out with the giant clam Tridacna maxima at 12 microatolls in One Tree Island lagoon, Great Barrier Reef, Australia (ENCORE Project). These nutrient concentrations remained for 2 to 3 h before returning to natural levels. The additions were made every low tide (twice per day) over 13 and 12 mo periods for the first and second phase of the experiment, respectively. The nutrients did not change the wet tissue weight of the clams, host C:N ratio, protein content of the mantle, calcification rates or growth rates. However, ammonium (N) enrichment alone significantly increased the total population density of the algal symbiont (Symbiodinium sp.: C = 3.6 · 108 cell clam−1, N = 6.6 · 108 cell clam−1, P = 5.7 · 108 cell clam−1, N + P = 5.7 · 108 cell clam−1; and C = 4.1 · 108 cell clam−1, N = 5.1 · 108 cell clam−1, P = 4.7 · 108 cell clam−1, N + P = 4.5 · 108 cell clam−1, at the end of the first and second phases of the experiment, respectively), although no differences in the mitotic index of these populations were detected. The total chlorophyll a (chl a) content per clam but not chlorophyll a per cell also increased with ammonium addition (C = 7.0 mg chl a clam−1, N = 13.1 mg chl a clam−1, P = 12.9 mg chl a clam−1, N + P = 11.8 mg chl a clam−1; and C = 8.8 mg chl a clam−1, N = 12.8 mg chl a clam−1; P = 11.2 mg chl a clam−1, N + P = 11.3 mg chl a clam−1, at the end of the first and second phases of the experiment, respectively). The response of clams to nutrient enrichment was quantitatively small, but indicated that small changes in inorganic nutrient levels affect the clam–zooxanthellae association.

Keywords

Biomass Chlorophyll Nutrient Concentration Nutrient Level Nutrient Enrichment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  •  Ambariyanto
    • 1
  • O. Hoegh-Guldberg
    • 1
  1. 1.School of Biological Sciences, A08, The University of Sydney, Sydney, New South Wales 2006, AustraliaAU

Personalised recommendations