Marine Biology

, 166:36 | Cite as

Between the current and the coast: genetic connectivity in the spiny lobster Panulirus homarus rubellus, despite potential barriers to gene flow

  • Sohana P. SinghEmail author
  • Johan C. Groeneveld
  • Sandi Willows-Munro
Original paper


The spiny lobster Panulirus homarus rubellus is endemic to the Southwest Indian Ocean, where it inhabits a narrow continental shelf between an exposed coast and the upper reaches of the strong western-boundary Agulhas Current. Long-lived phyllosoma larvae released in this dynamic ocean environment have an uncertain fate—they can be retained over the shelf by sub-mesoscale processes, dispersed downstream along the coast or across the Mozambique Channel, or become entrained in the Agulhas Current, and presumably lost. To assess gene flow and population genetic structure, we analyzed mitochondrial cytochrome oxidase subunit 1 and hypervariable control region sequences, and 19 nuclear microsatellite loci obtained from lobsters collected at nine sites in eastern South Africa, Mozambique and southeast Madagascar. Clustering analyses confirmed genetic connectivity among all populations, and gene flow patterns supported the hypothesis that nearshore processes, such as lee eddies and counter currents, retain some phyllosomas over the shelf; whereas, net gene flow direction was moderate towards the southwest. The Mozambique Channel did not impede contemporary gene flow from Madagascar to the African shelf, but return gene flow was rare. Different marker types showed contrasting gene flow patterns during contemporary and evolutionary periods, when Pleistocene glacial/interglacial cycles would have affected sea level, ocean currents and dispersal patterns. Despite genetic connectivity and the importance of local recruitment, recent gene flow suggests an ancillary source/sink dynamic concordant with the prevailing southwesterly direction of boundary currents at the shelf-edge—a factor to consider in regional fisheries and conservation strategies.



We thank Lourenzo Zacarias (Instituto Nacional de Investigaҫӑo Pesqueira, Maputo Mozambique), and the African Coelecanth Ecosystems Project (ACEP, Suitcase Project) for providing tissue samples.


The study received funding support from the South West Indian Ocean Fisheries Project (SWIOFP) and the first author obtained a PhD grant through the Professional Development Programme (PDP) of the National Research Foundation in South Africa.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable institutional and/or national guidelines for the care and use of animals were followed. Samples were collected under permits from the Department of Environmental Affairs in South Africa (Permit numbers RES2012/35, RES2013/65, RES2014/48, RES2015/36 and RES2016/14).

Supplementary material

227_2019_3486_MOESM1_ESM.docx (661 kb)
Supplementary material 1 (DOCX 661 kb)


  1. Abel G (2012) Migest: useful R code for the estimation of migration. The CRAN Project. Retrieved Jan 2018Google Scholar
  2. Ayre DJ, Dufty S (1994) Evidence for restricted gene flow in the viviparous coral Seriatopora hystrix on Australia’s Great Barrier Reef. Evolution 48:1183–1201PubMedCentralCrossRefPubMedGoogle Scholar
  3. Babbucci M, Buccoli S, Cau A, Cannas R, Goñi R, Díaz D, Marcato S, Zane L, Patarnello T (2010) Population structure, demographic history, and selective processes: contrasting evidences from mitochondrial and nuclear markers in the European spiny lobster Palinurus elephas (Fabricius, 1787). Mol Phylogenet Evol 56:1040–1050CrossRefPubMedGoogle Scholar
  4. Beerli P, Palczewski M (2010) Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 185:313–326PubMedCentralCrossRefPubMedGoogle Scholar
  5. Berry PF (1974) A revision of the Panulirus homarus-group of spiny lobsters (Decapoda, Palinuridae). Crustaceana 27:31–42CrossRefGoogle Scholar
  6. Berry PF (1978) Reproduction, growth and production in the mussel Perna perna (Linnaeus) on the east coast of South Africa. Investigational Report No. 48. Durban, South Africa: Oceanographic Research InstituteGoogle Scholar
  7. Berry PF, Heydorn AEF (1970) A comparison of the spermatophoric masses and mechanisms of fertilization in Southern African spiny lobsters (Palinuridae). Investigational Report No. 25. Durban, South Africa: Oceanographic Research InstituteGoogle Scholar
  8. Booth JD, Phillips BF (1994) Early life history of spiny lobster. Crustaceana 66:271–294CrossRefGoogle Scholar
  9. Bouckaert R, Heled J, Kuhnert D, Vaughan T, Wu C-H, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10:e1003537PubMedCentralCrossRefPubMedGoogle Scholar
  10. Butler MJ, Paris CB, Goldstein JS, Matsuda H, Cowen RK (2011) Behavior constrains the dispersal of long-lived spiny lobster larvae. Mar Ecol Prog Ser 422:223–237CrossRefGoogle Scholar
  11. Chapuis M-P, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631CrossRefPubMedGoogle Scholar
  12. Chiswell SM, Booth JD (1999) Rock lobster Jasus edwardsii larval retention by the Wairarapa Eddy off New Zealand. Mar Ecol Prog Ser 183:227–240CrossRefGoogle Scholar
  13. Chiswell SM, Wilkin J, Booth JD, Stanton B (2003) Trans-Tasman Sea larval transport: is Australia a source for New Zealand rock lobsters? Mar Ecol Prog Ser 247:173–182CrossRefGoogle Scholar
  14. Cossa O, Pous S, Penven P, Capet X, Reason CJC (2016) Modelling cyclonic eddies in the Delagoa Bight region. Cont Shelf Res 119:14–29CrossRefGoogle Scholar
  15. Dao HT, Todd EV, Jerry DR (2013) Characterization of polymorphic microsatellite loci for the spiny lobster Panulirus spp. and their utility to be applied to other Panulirus lobsters. Conserv Genet Resour 5:43–46CrossRefGoogle Scholar
  16. Dao HT, Smith-Keune C, Wolanski E, Jones CM, Jerry DR, Suzuki N (2015) Oceanographic currents and local ecological knowledge indicate, and genetics does not refute, a contemporary pattern of larval dispersal for the ornate spiny lobster, Panulirus ornatus in the South-East Asian Archipelago. PLoS One. CrossRefPubMedCentralPubMedGoogle Scholar
  17. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772PubMedCentralCrossRefPubMedGoogle Scholar
  18. De Ruijter WPM, Ridderinkhoff H, Lutjeharms JRE, Schouten MW, Veth C (2002) Observations of flow in the Mozambique Channel. Geophys Res Lett 29:1401–1403CrossRefGoogle Scholar
  19. De Ruijter WPM, van Aken HM, Beier EJ, Lutjeharms JRE, Matano RP, Schouten MW (2004) Eddies and dipoles around South Madagascar: formation, pathways and large-scale impact. Deep Sea Res I 51:383–400CrossRefGoogle Scholar
  20. Delghandi M, Goddard S, Jerry DR, Dao HT, Afzal HS, Al-Jardani S (2015) Isolation, characterization, and multiplexing of novel microsatellite markers for the tropical scalloped spiny lobster (Panulirus homarus). Genet Mol Res 14:19066–19070CrossRefPubMedGoogle Scholar
  21. Diniz FM, Maclean N, Ogawa M, Cintra IHA, Bentzen P (2005) The hypervariable domain of the mitochondrial control region in Atlantic spiny lobsters and its potential as a marker for investigating phylogeographic structuring. Mar Biotechnol 7:462–473CrossRefPubMedGoogle Scholar
  22. Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  23. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  24. Excoffier L, Lischer HEL (2010) Arlequin suite v. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567CrossRefPubMedGoogle Scholar
  25. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome C oxidase subunit I from metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMedGoogle Scholar
  26. Francis CM (2014) Systematics of the Laurencia complex (Rhodomelaceae, Rhodophyta) in southern Africa. PhD Thesis, Department of Biological Sciences, University of Cape Town, South Africa, xii + 199Google Scholar
  27. Francis RM (2017) Pophelper: an R package and web app to analyse and visualize population structure. Mol Ecol Resour 17:27–32CrossRefPubMedGoogle Scholar
  28. Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318CrossRefPubMedGoogle Scholar
  29. George RW (2005) Evolution of life cycles, including migration, in spiny lobsters (Palinuridae). N Z J Mar Freshw Res 39:503–514CrossRefGoogle Scholar
  30. George RW, Main AR (1967) The evolution of spiny lobsters (Palinuridae): a study of evolution in the marine environment. Evolution 21:803–820CrossRefPubMedGoogle Scholar
  31. Gopal K, Tolley KA, Groeneveld JC, Matthee CA (2006) Mitochondrial DNA variation in spiny lobster Palinurus delagoae suggests genetically structured populations in the southwestern Indian Ocean. Mar Ecol Prog Ser 319:191–198CrossRefGoogle Scholar
  32. Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486CrossRefGoogle Scholar
  33. Grant W, Bowen B (1998) Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J Hered 89:415–426CrossRefGoogle Scholar
  34. Greenbaum G, Templeton AR, Zarmi Y, Bar-David S (2014) Allelic richness following population founding events—a stochastic modelling framework incorporating gene flow and genetic drift. PLoS One 9:e115203PubMedCentralCrossRefPubMedGoogle Scholar
  35. Groeneveld JC, Branch GM (2002) Long-distance migration of South African deep-water rock lobster Palinurus gilchristi. Mar Ecol Prog Ser 232:225–238CrossRefGoogle Scholar
  36. Groeneveld JC, Gopal K, George RW, Matthee CA (2007) Molecular phylogeny of the spiny lobster genus Palinurus (Decapoda: Palinuridae) with hypotheses on speciation in the NE Atlantic/Mediterranean and SW Indian Ocean. Mol Phylogenet Evol 45:102–110CrossRefPubMedGoogle Scholar
  37. Groeneveld JC, von der Heyden S, Matthee CA (2012) High connectivity and lack of mtDNA differentiation among two previously recognized spiny lobster species in the southern Atlantic and Indian Oceans. Mar Biol Res 8:764–770CrossRefGoogle Scholar
  38. Gu Z, Gu L, Eils R, Schlesner M, Brors B (2014) Circlize implements and enhances circular visualization in R. Bioinformatics 30:2811–2812CrossRefPubMedGoogle Scholar
  39. Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  40. Halo I, Malauene B, Ostrowski M (2017) Physical oceanography. In: Groeneveld JC, Koranteng KA (eds) The RV Dr Fridtjof Nansen in the Western Indian Ocean: voyages of marine research and capacity development. FAO, Rome, pp 37–50Google Scholar
  41. Hancke L, Roberts MJ, Ternon JF (2014) Surface drifter trajectories highlight flow pathways in the Mozambique Channel. Deep Sea Res II 100:27–37CrossRefGoogle Scholar
  42. Healey AJE, Gouws G, Fennessy ST, Kuguru B, Sauer WHH, Shaw PW, McKeown NJ (2018) Genetic analysis reveals harvested Lethrinus nebulosus in the Southwest Indian Ocean comprise two cryptic species. ICES J Mar Sci 10:10. CrossRefGoogle Scholar
  43. Hutchings L, Beckley LE, Griffiths MH, Roberts MJ, Sundby S, van der Lingen C (2002) Spawning on the edge: spawning grounds and nursery areas around the southern African coastline. Mar Freshwat Res 53(2):307–318CrossRefGoogle Scholar
  44. Huyghe F, Kochzius M (2018) Sea surface currents and geographic isolation shape the genetic population structure of a coral reef fish in the Indian Ocean. PLoS One 13:e0193825PubMedCentralCrossRefPubMedGoogle Scholar
  45. Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:1–6CrossRefGoogle Scholar
  46. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066PubMedCentralCrossRefPubMedGoogle Scholar
  47. Kennington WJ, Cadee SA, Berry O, Groth DM, Johnson MS, Melville-Smith R (2013) Maintenance of genetic variation and panmixia in the commercially exploited western rock lobster (Panulirus cygnus). Conserv Genet 14:115–124CrossRefGoogle Scholar
  48. Kool JT, Moilanen A, Treml EA (2013) Population connectivity: recent advances and new perspectives. Landscape Ecol 28:165–185CrossRefGoogle Scholar
  49. Kough AS, Paris CB, Butler MJ IV (2013) Larval connectivity and the international management of fisheries. PLoS One 8:e64970. CrossRefPubMedCentralPubMedGoogle Scholar
  50. Krueck NC, Ahmadia GN, Green A, Jones GP, Possingham HP, Riginos C, Treml EA, Mumby PJ (2017) Incorporating larval dispersal into MPA design for both conservation and fisheries. Ecol Appl 27:925–941CrossRefPubMedGoogle Scholar
  51. Krug M, Swart S, Gula J (2017) Submesoscale cyclones in the Agulhas Current. Geophys Res Lett. CrossRefGoogle Scholar
  52. Lamont T, Roberts MJ, Barlow RG, Morris T, van den Berg MA (2010) Circulation patterns in the Delagoa Bight, Mozambique, and the influence of deep ocean eddies. Afr J Mar Sci 32:553–562CrossRefGoogle Scholar
  53. Lanfear R, Calcott B, Ho SYW, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 29:1695–1701CrossRefPubMedGoogle Scholar
  54. Lavery SD, Farhadi A, Farahmand H, Chan TY, Azhdehakoshpour A, Thakur V, Jeffs AG (2014) Evolutionary divergence of geographic subspecies within the scalloped spiny lobster Panulirus homarus (Linnaeus 1758). PLoS One. CrossRefPubMedCentralPubMedGoogle Scholar
  55. Leigh JW, Bryant D, Nakagawa S (2015) popart: full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116. CrossRefGoogle Scholar
  56. Long S (2017) Short-term impacts and value of a periodic no take zone (NTZ) in a community-managed small-scale lobster fishery, Madagascar. PLoS One 12:e0177858PubMedCentralCrossRefPubMedGoogle Scholar
  57. Luikart G, Cornuet JM (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237CrossRefGoogle Scholar
  58. Luikart G, Allendorf F, Cornuet J, Sherwin W (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247CrossRefPubMedGoogle Scholar
  59. Lutjeharms JRE (2006) The agulhas current. Springer, Heidelberg, p 329Google Scholar
  60. Lutjeharms JRE, da Silva J (1988) The Delagoa Bight eddy. Deep Sea Res II 35:619–634CrossRefGoogle Scholar
  61. Marsac F, Barlow R, Ternon JF, Ménard F, Roberts M (2014) Ecosystem functioning in the Mozambique Channel: synthesis and future research. Deep Sea Res II 100:212–220CrossRefGoogle Scholar
  62. Matthee CA, Cockcroft AC, Gopal K, von der Heyden S (2007) Mitochondrial DNA variation of the west-coast rock lobster, Jasus lalandii: marked genetic diversity differences among sampling sites. Mar Freshw Res 58:1130–1135CrossRefGoogle Scholar
  63. Mattio L, Bolton JJ, Anderson RJ (2015) Contribution to the revision of the genus Sargassum (Fucales, Phaeophyceae) in Madagascar using morphological and molecular data. Cryptogam Algologie 36:143–169CrossRefGoogle Scholar
  64. Mkare TK, Groeneveld JC, Teske PR, Matthee CA (2017) Comparative genetic structure in two high-dispersal prawn species from the Southwestern Indian Ocean. Afr J Mar Sci 39:467–474CrossRefGoogle Scholar
  65. Moore R, MacFarlane JW (1984) Migration of the ornate rock lobster, Panulirus ornatus (Fabricius), in Papua New Guinea. Mar Freshw Res 35:197–212CrossRefGoogle Scholar
  66. Morgan EMJ, Green BS, Murphy NP, Strugnell JM (2013) Investigation of genetic structure between deep and shallow populations of the southern rock lobster, Jasus edwardsii in Tasmania, Australia. PLoS One 8:10. CrossRefPubMedCentralGoogle Scholar
  67. Nanninga GB, Saenz-Agudelo P, Manica A, Berumen ML (2013) Environmental gradients predict the genetic structure of a coral reef fish in the Red Sea. Mol Ecol. CrossRefGoogle Scholar
  68. Naro-Maciel E, Reid B, Holmes KE, Brumbaugh DR, Martin M, DeSalle R (2011) Mitochondrial DNA sequence variation in spiny lobsters: population expansion, panmixia, and divergence. Mar Biol 158:2027–2041CrossRefGoogle Scholar
  69. Ockhuis S, Huggett JA, Gouws G, Sparks C (2017) The ‘suitcase hypothesis’: can entrainment of meroplankton by eddies provide a pathway for gene flow between Madagascar and KwaZulu-Natal, South Africa? Afr J Mar Sci 39:435–451CrossRefGoogle Scholar
  70. Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation based exploration of accuracy and power. Mol Ecol 13:55–65CrossRefPubMedGoogle Scholar
  71. Palumbi SR (1994) Genetic divergence, reproductive isolation, and marine speciation. Annu Rev Ecol Syst 25:547–572CrossRefGoogle Scholar
  72. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  73. Piry S, Luikart G, Cornuet J-M (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503CrossRefGoogle Scholar
  74. Piry S, Alapetite A, Cornuet J-M, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539CrossRefPubMedGoogle Scholar
  75. Planes S, Jones GP, Thorrold SR (2009) Larval dispersal connects fish populations in a network of marine protected areas. Proc Natl Acad Sci 106:5693–5697Google Scholar
  76. Pollock DE (1990) Palaeoceanography and speciation in the spiny lobster genus Jasus. Bull Mar Sci 46:387–405Google Scholar
  77. Pollock DE (1992) Palaeoceanography and speciation in the spiny lobster genus Panulirus in the Indo-Pacific. Bull Mar Sci 51:135–146Google Scholar
  78. Pollock DE, Melville-Smith R (1993) Decapod life histories and reproductive dynamics in relation to oceanography off southern Africa. S Afr J Mar Sci 13:205–212CrossRefGoogle Scholar
  79. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  80. Pritchard JK, Wen X, Falush D (2009) Documentation for structure software: Version 2.3Google Scholar
  81. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  82. Rambaut A, Drummond AJ (2007) Tracer v. 1.6.
  83. Randall JE, King DR (2009) Parupeneus fraserorum, a new species of goatfish (Perciformes: Mullidae) from South Africa and Madagascar. Smithiana Bull 10:31–35Google Scholar
  84. Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci 94:9197–9201CrossRefPubMedGoogle Scholar
  85. Reddy MM, MacDonald AHH, Groeneveld JC, Schleyer MH (2014) Phylogeography of the scalloped spiny-lobster Panulirus homarus rubellus in the Southwest Indian Ocean. J Crustac Biol 34:773–781CrossRefGoogle Scholar
  86. Ridderinkhof W, Le Bars D, von der Heydt AS, de Ruijter WPM (2013) Dipoles of the South East Madagascar Current. Geophys Res Lett 40:558–562CrossRefGoogle Scholar
  87. Roberts MJ, van der Lingen CD, Whittle C, van den Berg M (2010) Shelf currents, lee-trapped and transient eddies on the inshore boundary of the Agulhas Current, South Africa: their relevance to the KwaZulu-Natal sardine run. Afr J Mar Sci 32:423–447CrossRefGoogle Scholar
  88. Robitzch V, Banguera-Hinestroza E, Sawall Y, Al-Sofyani A, Voolstra CR (2015) Absence of genetic differentiation in the coral Pocillopora verrucosa along environmental gradients of the Saudi Arabian Red Sea. Front Mar Sci. CrossRefGoogle Scholar
  89. Ryman N, Palm S (2006) POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Mol Ecol Notes 6:600–602CrossRefGoogle Scholar
  90. Saetre R, da Silva AJ (1984) The circulation of the Mozambique channel. Deep Sea Res 31:485–508CrossRefGoogle Scholar
  91. Santos J, Rouillard D, Groeneveld JC (2014) Advection-diffusion models of spiny lobster Palinurus gilchristi migrations for use in spatial fisheries management. Mar Ecol Prog Ser 498:227–241CrossRefGoogle Scholar
  92. Selkoe KA, D’Aloia C, Crandall E, Iacchei M, Liggins L, Puritz J, von der Heyden S, Toonen R (2016) A decade of seascape genetics: contributions to basic and applied marine connectivity. Mar Ecol Prog Ser 554:1–19CrossRefGoogle Scholar
  93. Senevirathna JDM, Munasinghe DHN, Mather PB (2016) Assessment of genetic structure in wild populations of Panulirus homarus (Linnaeus, 1758) across the South Coast of Sri Lanka inferred from mitochondrial DNA sequences. Int J Mar Sci 6:1–9Google Scholar
  94. Siedler G, Rouault M, Biastoch A, Backeberg B, Reason CJC, Lutjeharms JRE (2009) Modes of the southern extension of the East Madagascar Current. J Geophys Res. CrossRefGoogle Scholar
  95. Singh SP, Groeneveld JC, Al-Marzouqi A, Willows-Munro S (2017) A molecular phylogeny of the spiny lobster Panulirus homarus highlights a separately evolving lineage from the Southwest Indian Ocean. PeerJ 5:e3356PubMedCentralCrossRefPubMedGoogle Scholar
  96. Singh SP, Groeneveld JC, Hart-Davis MG, Backeberg BC, Willows-Munro S (2018) Seascape genetics of the spiny lobster Panulirus homarus in the Western Indian Ocean: understanding how oceanographic features shape the genetic structure of species with high larval dispersal potential. Ecol Evol 8:12221–12237. CrossRefPubMedCentralPubMedGoogle Scholar
  97. Steyn E, Schleyer M (2011) Movement patterns of the East Coast rock lobster Panulirus homarus rubellus on the coast of KwaZulu-Natal, South Africa. N Z J Mar Freshw Res 45:85–101CrossRefGoogle Scholar
  98. Steyn E, Fielding PJ, Schleyer MH (2008) An assessment of the artisanal fishery of east coast rock lobster, Panulirus homarus (Linnaeus) in Transkei. Afr J Mar Sci 30:497–506CrossRefGoogle Scholar
  99. Teske PR, Papadopoulos I, Newman BK, Dworschak PC, McQuaid CD, Barker NP (2008) Oceanic dispersal barriers, adaptation and larval retention: an interdisciplinary assessment of potential factors maintaining a phylogeographic break between sister lineages of an African prawn. BMC Evol Biol 8:341PubMedCentralCrossRefPubMedGoogle Scholar
  100. Teske PR, Sandoval-Castillo J, van Sebille E, Waters J, Beheregaray LB (2015) On-shelf larval retention limits population connectivity in a coastal broadcast spawner. Mar Ecol Prog Ser 532:1–12CrossRefGoogle Scholar
  101. Tolley KA, Groeneveld JC, Gopal K, Matthee CA (2005) Mitochondrial DNA panmixia in spiny lobster Palinurus gilchristi suggests a population expansion. Mar Ecol Prog Ser 297:225–231CrossRefGoogle Scholar
  102. Tsang LM, Achituv Y, Chu KH, Chan BKK (2012) Zoogeography of intertidal communities in the West Indian Ocean as determined by ocean circulation systems: patterns from the Tetraclita barnacles. PLoS One 7(9):e45120. CrossRefPubMedCentralPubMedGoogle Scholar
  103. van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  104. von der Heyden S (2009) Why do we need to integrate population genetics into South African marine protected area planning. Afr J Mar Sci 31:263–269CrossRefGoogle Scholar
  105. von der Heyden S, Lipinski MR, Matthee CA (2007) Mitochondrial DNA analyses of the Cape hakes reveal an expanding, panmictic population for Merluccius capensis and population structuring for mature fish in Merluccius paradoxus. Mol Phylogenet Evol 42:517–527CrossRefPubMedGoogle Scholar
  106. Wang IJ (2010) Recognizing the temporal distinctions between landscape genetics and phylogeography. Mol Ecol 19:2605–2608CrossRefPubMedGoogle Scholar
  107. Waples RS (1991) Genetic methods for estimating the effective size of cetacean populations. Rep Int Whal Comm Spec Issue 13:279–300Google Scholar
  108. Wheeler DL, Church DM, Federhen S, Lash AE, Madden TL, Pontius JU, Schuler GD, Schriml LM, Sequeira E, Tatusova TA, Wagner L (2003) Database resources of the National Center for Biotechnology. Nucleic Acids Res 1:28–33CrossRefGoogle Scholar
  109. Wickham H, Francois R (2015) Dplyr: a grammar of data manipulation. R Package Version 0.4.3.
  110. Wilkin JL, Jeffs AG (2011) Energetics of swimming to shore in the puerulus stage of a spiny lobster: can a postlarval lobster afford the cost of crossing the continental shelf? Limnol Oceanogr Fluids Environ 1:163–175CrossRefGoogle Scholar
  111. Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191PubMedCentralPubMedGoogle Scholar
  112. Yellapu B, Jeffs A, Battaglene S, Lavery SD (2016) Population subdivision in the tropical spiny lobster Panulirus ornatus throughout its Indo-West Pacific distribution. ICES J Mar Sci 74:759–768Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Oceanographic Research InstituteMarine ParadeSouth Africa
  2. 2.School of Life SciencesUniversity of KwaZulu-NatalPietermaritzburgSouth Africa

Personalised recommendations