Skip to main content
Log in

Within- and among-leaf variations in photo-physiological functions, gene expression and DNA methylation patterns in the large-sized seagrass Posidonia oceanica

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The knowledge of how molecular functions vary in relation to developmental and environmental cues within and among seagrass leaves is scarce in comparison with terrestrial angiosperms. This strongly limits the mechanistic understanding of photosynthetic development and light acclimation processes in seagrasses, besides having fundamental methodological implications when small leaf sections are utilized as a proxy for assessing the photosynthetic performance and molecular responses to environmental changes for the whole plant. Here, the expression gradients of genes associated with key plant metabolic processes (i.e. photosynthesis, energy dissipation mechanisms, stress response and programmed cell death) were determined, for the first time, in three segments (i.e. basal, medium and high) along the longitudinal axis of three ranked leaves (i.e. leaf 1, 2 and 3) in the large-sized seagrass Posidonia oceanica. The evaluation of major shifts in gene expression paralleled the analysis of photo-physiological properties and global DNA methylation level of the different leaf sections. Photo-physiological and molecular results converged in suggesting that the within-leaf (vertical) gradient was stronger than the leaf-rank (horizontal) gradient, likely reflecting the sharp irradiance attenuation occurring inside the complex canopy formed by this species. Specific correlations between target gene expression and photo-physiological measurements were found, providing a first description of molecular rearrangements underlying the differential photosynthetic performance and light acclimation capacity of seagrass leaves. DNA methylation varied with tissue age, being higher in the youngest and oldest leaf sections, while decreasing in intermediate tissues. We interpreted such changes as a consequence of the interplay between developmental and light cues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alcoverro T, Manzanera M, Romero J (1998) Seasonal and age-dependent variability of Posidonia oceanica (L.) Delile photosynthetic parameters. J Exp Mar Biol Ecol 230:1–13. https://doi.org/10.1016/S0022-0981(98)00022-7

    Article  CAS  Google Scholar 

  • Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Can Res 64:5245–5250. https://doi.org/10.1158/0008-5472.can-04-0496

    Article  CAS  Google Scholar 

  • Arnaud-Haond S, Duarte CM, Diaz-Almela E, Marbà N, Sintes T, Serrão EA (2012) Implications of extreme life span in clonal organisms: millenary clones in meadows of the threatened seagrass Posidonia oceanica. PLoS One 7:e30454. https://doi.org/10.1371/journal.pone.0030454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aro E-M, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochimica et Biophysica Acta Bioenerg 1143:113–134. https://doi.org/10.1016/0005-2728(93)90134-2

    Article  CAS  Google Scholar 

  • Cahoon AB, Takacs EM, Sharpe RM, Stern DB (2008) Nuclear, chloroplast, and mitochondrial transcript abundance along a maize leaf developmental gradient. Plant Mol Biol 66:33–46. https://doi.org/10.1007/s11103-007-9250-z

    Article  CAS  PubMed  Google Scholar 

  • Candaele J, Demuynck K, Mosoti D, Beemster GTS, Inzé D, Nelissen H (2014) Differential methylation during maize leaf growth targets developmentally regulated genes. Plant Physiol 164:1350–1364. https://doi.org/10.1104/pp.113.233312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang Y-M, Liu W-Y, Shih AC-C, Shen M-N, Lu C-H, Lu M-YJ, Yang H-W, Wang T-Y, Chen SC-C, Chen SM, Li W-H, Ku MSB (2012) Characterizing regulatory and functional differentiation between maize mesophyll and bundle sheath cells by transcriptomic analysis. Plant Physiol 160:165–177. https://doi.org/10.1104/pp.112.203810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Zhu J-K (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139. https://doi.org/10.1016/j.pbi.2008.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke K, Gorley R (2006) PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Costanza R, dArge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, Oneill R, Paruelo J (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  CAS  Google Scholar 

  • Cullen-Unsworth LC, Nordlund LM, Paddock J, Baker S, McKenzieLJ Unsworth RK (2014) Seagrass meadows globally as a coupled social–ecological system: implications for human wellbeing. Mar Pollut Bull 83(2):387–397

    Article  CAS  Google Scholar 

  • D’Esposito D, Orrù L, Dattolo E, Bernardo L, Lamontanara A, Orsini L, Serra I, Mazzuca S, Procaccini G (2017) Transcriptome characterisation and simple sequence repeat marker discovery in the seagrass Posidonia oceanica. Sci Data 3:160115

    Article  Google Scholar 

  • Dalla Via J, Sturmbauer C, Schönweger G, Sötz E, Mathekowitsch S, Stifter M, Rieger R (1998) Light gradients and meadow structure in Posidonia oceanica: ecomorphological and functional correlates. Mar Ecol Prog Ser 163:267–278. https://doi.org/10.3354/meps163267

    Article  Google Scholar 

  • Dattolo E, Ruocco M, Brunet C, Lorenti M, Lauritano C, D’Esposito D, De Luca P, Sanges R, Mazzuca S, Procaccini G (2014) Response of the seagrass Posidonia oceanica to different light environments: insights from a combined molecular and photo-physiological study. Mar Environ Res 101:225–236. https://doi.org/10.1016/j.marenvres.2014.07.010

    Article  CAS  PubMed  Google Scholar 

  • De Pinto M, Locato V, De Gara L (2012) Redox regulation in plant programmed cell death. Plant Cell Environ 35:234–244

    Article  Google Scholar 

  • Durako MJ, Kunzelman JI (2002) Photosynthetic characteristics of Thalassia testudinum measured in situ by pulse-amplitude modulated (PAM) fluorometry: methodological and scale-based considerations. Aquat Bot 73:173–185. https://doi.org/10.1016/S0304-3770(02)00020-7

    Article  Google Scholar 

  • Enríquez S, Borowitzka MA (2010) The use of the fluorescence signal in studies of seagrasses and macroalgae. In: Suggett D, Prášil O, Borowitzka M (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Springer, Dordrecht, pp 187–208

    Chapter  Google Scholar 

  • Enríquez S, Merino M, Iglesias-Prieto R (2002) Variations in the photosynthetic performance along the leaves of the tropical seagrass Thalassia testudinum. Mar Biol 140:891–900

    Article  Google Scholar 

  • Evert RF, Russin WA, Bosabalidis AM (1996) Anatomical and ultrastructural changes associated with sink-to-source transition in developing maize leaves. Int J Plant Sci 157:247–261

    Article  Google Scholar 

  • Finnegan PM, Soole KL, Umbach AL (2004) Alternative mitochondrial electron transport proteins in higher plants. In: Day DA, Millar AH, Whelan J (eds) Plant mitochondria: from genome to function. Springer, Dordrecht, pp 163–230

    Chapter  Google Scholar 

  • Golicz AA, Schliep M, Lee HT, Larkum AWD, Dolferus R, Batley J, Chan C-KK, Sablok G, Ralph PJ, Edwards D (2015) Genome-wide survey of the seagrass Zostera muelleri suggests modification of the ethylene signalling network. J Exp Bot 66:1489–1498. https://doi.org/10.1093/jxb/eru510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greco M, Chiappetta A, Bruno L, Bitonti MB (2013) Effects of light deficiency on genome methylation in Posidonia oceanica. Mar Ecol Prog Ser 473:103–114

    Article  CAS  Google Scholar 

  • Guo Y, Gan S (2005) Leaf senescence: signals, execution, and regulation current topics in developmental biology. Academic Press, New York, pp 83–112

    Google Scholar 

  • Hammer Ø, Harper D, Ryan P (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontolia Electronica 4:9

    Google Scholar 

  • Jahnke M, Olsen JL, Procaccini G (2015) A meta-analysis reveals a positive correlation between genetic diversity metrics and environmental status in the long-lived seagrass Posidonia oceanica. Mol Ecol 24:2336–2348. https://doi.org/10.1111/mec.13174

    Article  PubMed  Google Scholar 

  • Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291. https://doi.org/10.1093/bioinformatics/btm091

    Article  CAS  PubMed  Google Scholar 

  • Kuo J, Den Hartog C (2007) Seagrass morphology, anatomy, and ultrastructure. In: Seagrasses: biology, ecology and conservation. Springer, Dordrecht, pp 51–87

  • Larkum AWD, Orth RJ, Duarte CM (2006) Seagrasses: biology, ecology and conservation. Springer, Dordrecht  

    Google Scholar 

  • Lauritano C, Ruocco M, Dattolo E, Buia MC, Silva J, Santos R, Olivé I, Costa MM, Procaccini G (2015) Response of key stress-related genes of the seagrass Posidonia oceanica in the vicinity of submarine volcanic vents. Biogeosciences 12:4185–4194

    Article  Google Scholar 

  • Leech RM, Rumsby MG, Thomson WW (1973) Plastid differentiation, acyl lipid, and fatty acid changes in developing green maize leaves. Plant Physiol 52:240–245

    Article  CAS  Google Scholar 

  • Les DH, Cleland MA, Waycott M (1997) Phylogenetic studies in Alismatidae, II: evolution of marine angiosperms (seagrasses) and hydrophily. Syst Bot 22:443–463. https://doi.org/10.2307/2419820

    Article  Google Scholar 

  • Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta SL, Kebrom TH, Provart N, Patel R, Myers CR (2010) The developmental dynamics of the maize leaf transcriptome. Nat Genet 42:1060–1067

    Article  CAS  Google Scholar 

  • Li N, Chen Y-R, Ding Z, Li P, Wu Y, Zhang A, Yu S, Giovannoni JJ, Fei Z, Zhang W (2015) Nonuniform gene expression pattern detected along the longitudinal axis in the matured rice leaf. Sci Rep 5:8015

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Portland Press Limited, London

    Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136. https://doi.org/10.1146/annurev.arplant.57.032905.105316

    Article  CAS  PubMed  Google Scholar 

  • Liu W-Y, Chang Y-M, Chen SC-C, Lu C-H, Wu Y-H, Lu M-YJ, Chen D-R, Shih AC-C, Sheue C-R, Huang H-C, Yu C-P, Lin H-H, Shiu S-H, Sun-Ben KuM, Li W-H (2013) Anatomical and transcriptional dynamics of maize embryonic leaves during seed germination. Proc Natl Acad Sci 110:3979–3984. https://doi.org/10.1073/pnas.1301009110

    Article  PubMed  Google Scholar 

  • Majeran W, Friso G, Ponnala L, Connolly B, Huang M, Reidel E, Zhang C, Asakura Y, Bhuiyan NH, Sun Q, Turgeon R, van Wijk KJ (2010) Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize. Plant Cell 22:3509–3542. https://doi.org/10.1105/tpc.110.079764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Major KM, Dunton KH (2002) Variations in light-harvesting characteristics of the seagrass, Thalassia testudinum: evidence for photoacclimation. J Exp Mar Biol Ecol 275:173–189. https://doi.org/10.1016/S0022-0981(02)00212-5

    Article  CAS  Google Scholar 

  • Marín-Guirao L, Sandoval-Gil JM, Ruíz JM, Sánchez-Lizaso JL (2011) Photosynthesis, growth and survival of the Mediterranean seagrass Posidonia oceanica in response to simulated salinity increases in a laboratory mesocosm system. Estuar Coast Shelf Sci 92:286–296. https://doi.org/10.1016/j.ecss.2011.01.003

    Article  CAS  Google Scholar 

  • Marín-Guirao Ruiz JM, Sandoval-GilJM Bernardeau-Esteller J, Stinco CM, Meléndez-Martínez A (2013) Xanthophyll cycle-related photoprotective mechanism in the Mediterranean seagrasses Posidonia oceanica and Cymodocea nodosa under normal and stressful hypersaline conditions. Aquat Bot 109:14–24

    Article  Google Scholar 

  • Marín-Guirao L, Bernardeau-Esteller J, Ruiz JM, Sandoval JM (2015) Resistance of Posidonia oceanica seagrass meadows to the spread of the introduced green alga Caulerpa cylindracea: assessment of the role of light. Biol Invasions 17(7):1989–2009

    Article  Google Scholar 

  • Marín-Guirao L, Entrambasaguas L, Dattolo E, Ruiz JM, Procaccini G (2017) Molecular mechanisms behind the physiological resistance to intense transient warming in an iconic marine plant. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01142

    Article  PubMed  PubMed Central  Google Scholar 

  • Marín-Guirao L, Bernardeau-Esteller J, García-Muñoz R, Ramos A, Ontoria Y, Romero J, Pérez M, Ruiz JM, Procaccini G (2018) Carbon economy of Mediterranean seagrasses in response to thermal stress. Mar Pollut Bull 135:617–629

    Article  Google Scholar 

  • Martineau B, Taylor WC (1985) Photosynthetic gene expression and cellular differentiation in developing maize leaves. Plant Physiol 78:399–404. https://doi.org/10.1104/pp.78.2.399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mateo M, Romero J (1997) Detritus dynamics in the seagrass Posidonia oceanica: elements for an ecosystem carbon and nutrient budget. Oceanogr Lit Rev 10:1106

    Google Scholar 

  • Mattiello L, Riaño-Pachón DM, Martins MCM, da Cruz LP, Bassi D, Marchiori PER, Ribeiro RV, Labate MTV, Labate CA, Menossi M (2015) Physiological and transcriptional analyses of developmental stages along sugarcane leaf. BMC Plant Biol 15:300. https://doi.org/10.1186/s12870-015-0694-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzella L, Alberte RS (1986) Light adaptation and the role of autotrophic epiphytes in primary production of the temperate seagrass, Zostera marina L. J Exp Mar Biol Ecol 100:165–180

    Article  Google Scholar 

  • Mazzella L, Mauzerall D, Alberte R (1980) Photosynthetic light adaptation features of Zostera marina L (eelgrass). In: Biological bulletin. Marine biological laboratory, MA, pp 500–500

  • Mullet JE (1988) Chloroplast development and gene expression. Annu Rev Plant Physiol Plant Mol Biol 39:475–502. https://doi.org/10.1146/annurev.pp.39.060188.002355

    Article  CAS  Google Scholar 

  • Mulo P, Sakurai I, Aro E-M (2012) Strategies for psbA gene expression in cyanobacteria, green algae and higher plants: from transcription to PSII repair. Biochimica et Biophysica Acta Bioenerg 1817:247–257. https://doi.org/10.1016/j.bbabio.2011.04.011

    Article  CAS  Google Scholar 

  • Munekage Y, Hashimoto M, Miyake C, Tomizawa K-I, Endo T, Tasaka M, Shikanai T (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429:579–582

    Article  CAS  Google Scholar 

  • Niederhuth CE, Schmitz RJ (2017) Putting DNA methylation in context: from genomes to gene expression in plants. Biochimica et Biophysica Acta Gene Regul Mech 1860:149–156. https://doi.org/10.1016/j.bbagrm.2016.08.009

    Article  CAS  Google Scholar 

  • Niyogi KK, Li XP, Rosenberg V, Jung HS (2005) Is PsbS the site of non-photochemical quenching in photosynthesis? J Exp Bot 56:375–382. https://doi.org/10.1093/jxb/eri056

    Article  CAS  PubMed  Google Scholar 

  • Olivé I, Vergara J, Pérez-Lloréns J (2013) Photosynthetic and morphological photoacclimation of the seagrass Cymodocea nodosa to season, depth and leaf position. Mar Biol 160:285–297

    Article  Google Scholar 

  • Olsen JL, Rouzé P, Verhelst B, Lin Y-C, Bayer T, Collen J, Dattolo E, De Paoli E, Dittami S, Maumus F, Michel G, Kersting A, Lauritano C, Lohaus R, Töpel M, Tonon T, Vanneste K, Amirebrahimi M, Brakel J, Boström C, Chovatia M, Grimwood J, Jenkins JW, Jueterbock A, Mraz A, Stam WT, Tice H, Bornberg-Bauer E, Green PJ, Pearson GA, Procaccini G, Duarte CM, Schmutz J, Reusch TBH, Van de Peer Y (2016) The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature 530:331–335. https://doi.org/10.1038/nature16548

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl M, Tichopad A, Prgomet C, Neuvians T (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515. https://doi.org/10.1023/B:BILE.0000019559.84305.47

    Article  CAS  PubMed  Google Scholar 

  • Pick TR, Bräutigam A, Schlüter U, Denton AK, Colmsee C, Scholz U, Fahnenstich H, Pieruschka R, Rascher U, Sonnewald U, Weber APM (2011) Systems analysis of a maize leaf developmental gradient redefines the current C4 model and provides candidates for regulation. Plant Cell 23:4208–4220. https://doi.org/10.1105/tpc.111.090324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Procaccini G, Ruocco M, Marín-Guirao L, Dattolo E, Brunet C, D’Esposito D, Lauritano C, Mazzuca S, Serra IA, Bernardo L, Piro A, Beer S, Björk M, Gullström M, Buapet P, Rasmusson LM, Felisberto P, Gobert S, Runcie JW, Silva J, Olivé I, Costa MM, Barrote I, Santos R (2017) Depth-specific fluctuations of gene expression and protein abundance modulate the photophysiology in the seagrass Posidonia oceanica. Sci Rep 7:42890. https://doi.org/10.1038/srep42890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ralph PJ, Gademann R (1999) Photosynthesis of the seagrass Posidonia australis Hook. f. and associated epiphytes, measured by in situ fluorescence analysis. In: Seagrass flora and fauna of Rottnest Island, Western Australia, pp 63–71

  • Ralph P, Polk S, Moore K, Orth R, Smith W (2002) Operation of the xanthophyll cycle in the seagrass Zostera marina in response to variable irradiance. J Exp Mar Biol Ecol 271:189–207

    Article  CAS  Google Scholar 

  • Ralph PJ, Durako MJ, Enríquez S, Collier CJ, Doblin MA (2007) Impact of light limitation on seagrasses. J Exp Mar Biol Ecol 350:176–193. https://doi.org/10.1016/j.jembe.2007.06.017

    Article  Google Scholar 

  • Richards EJ (1997) DNA methylation and plant development. Trends Genet 13:319–323. https://doi.org/10.1016/S0168-9525(97)01199-2

    Article  CAS  PubMed  Google Scholar 

  • Robson CA, Vanlerberghe GC (2002) Transgenic plant cells lacking mitochondrial alternative oxidase have increased susceptibility to mitochondria-dependent and -independent pathways of programmed cell death. Plant Physiol 129:1908

    Article  CAS  Google Scholar 

  • Ruocco M, Marín-Guirao L, Ravaglioli C, Bulleri F, Procaccini G (2018) Molecular level responses to chronic versus pulse nutrient loading in the seagrass Posidonia oceanica undergoing herbivore pressure. Oecologia 188:23

    Article  Google Scholar 

  • Sandoval-Gil JM, Ruiz JM, Marin-Guirao L, Bernardeau-Esteller J, Sanchez-Lizaso JL (2014) Ecophysiological plasticity of shallow and deep populations of the Mediterranean seagrasses Posidonia oceanica and Cymodocea nodosa in response to hypersaline stress. Mar Environ Res 95:39–61. https://doi.org/10.1016/j.marenvres.2013.12.011

    Article  CAS  PubMed  Google Scholar 

  • Schubert N, Colombo-Pallota MF, Enríquez S (2015) Leaf and canopy scale characterization of the photoprotective response to high-light stress of the seagrass Thalassia testudinum. Limnol Oceanogr 60:286–302. https://doi.org/10.1002/lno.10024

    Article  CAS  Google Scholar 

  • Serra IA, Lauritano C, Dattolo E, Puoti A, Nicastro S, Innocenti AM, Procaccini G (2012) Reference genes assessment for the seagrass Posidonia oceanica in different salinity, pH and light conditions. Mar Biol 159:1269–1282

    Article  CAS  Google Scholar 

  • Sharman B (1942) Developmental anatomy of the shoot of Zea mays L. Ann Bot 6:245–282

    Article  Google Scholar 

  • Svensson ÅS, Rasmusson AG (2001) Light-dependent gene expression for proteins in the respiratory chain of potato leaves. Plant J 28:73–82

    Article  CAS  Google Scholar 

  • Tolley BJ, Woodfield H, Wanchana S, Bruskiewich R, Hibberd JM (2012) Light-regulated and cell-specific methylation of the maize PEPC promoter. J Exp Bot 63:1381–1390. https://doi.org/10.1093/jxb/err367

    Article  CAS  PubMed  Google Scholar 

  • Traboni C, Mammola SD, Ruocco M, Ontoria Y, Ruiz JM, Procaccini G, Marín-Guirao L (2018) Investigating cellular stress response to heat stress in the seagrass Posidonia oceanica in a global change scenario. Mar Environ Res. https://doi.org/10.1016/j.marenvres.2018.07.007

    Article  PubMed  Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3-new capabilities and interfaces. Nucleic Acids Res 40:e115–e115. https://doi.org/10.1093/nar/gks596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valière N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Notes 2(3):377–379

    Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:1–12. https://doi.org/10.1186/gb-2002-3-7-research0034

    Article  Google Scholar 

  • Vanlerberghe GC, Robson CA, Yip JYH (2002) Induction of mitochondrial alternative oxidase in response to a cell signal pathway down-regulating the cytochrome pathway prevents programmed cell death. Plant Physiol 129:1829

    Article  CAS  Google Scholar 

  • Vishwakarma A, Bashyam L, Senthilkumaran B, Scheibe R, Padmasree K (2014) Physiological role of AOX1a in photosynthesis and maintenance of cellular redox homeostasis under high light in Arabidopsis thaliana. Plant Physiol Biochem 81:44–53

    Article  CAS  Google Scholar 

  • Vishwakarma A, Tetali SD, Selinski J, Scheibe R, Padmasree K (2015) Importance of the alternative oxidase (AOX) pathway in regulating cellular redox and ROS homeostasis to optimize photosynthesis during restriction of the cytochrome oxidase pathway in Arabidopsis thaliana. Ann Bot 116:555–569

    Article  CAS  Google Scholar 

  • Wang L, Czedik-Eysenberg A, Mertz RA, Si Y, Tohge T, Nunes-Nesi A, Arrivault S, Dedow LK, Bryant DW, Zhou W, Xu J, Weissmann S, Studer A, Li P, Zhang C, LaRue T, Shao Y, Ding Z, Sun Q, Patel RV, Turgeon R, Zhu X, Provart NJ, Mockler TC, Fernie AR, Stitt M, Liu P, Brutnell TP (2014) Comparative analyses of C4 and C3 photosynthesis in developing leaves of maize and rice. Nat Biotechnol 32:1158. https://doi.org/10.1038/nbt.3019

    Article  CAS  PubMed  Google Scholar 

  • Watanabe N, Lam E (2006) Arabidopsis Bax inhibitor-1 functions as an attenuator of biotic and abiotic types of cell death. Plant J 45:884–894

    Article  CAS  Google Scholar 

  • Waycott M, Procaccini G, Les DH, Reusch TBH (2007) Seagrass evolution, ecology and conservation: a genetic perspective. In: Seagrasses: biology, ecology and conservation. Springer, Dordrecht, pp 25–50

  • Wissler L, Codoner FM, Gu J, Reusch TB, Olsen JL, Procaccini G, Bornberg-Bauer E (2011) Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life. BMC Evol Biol 11:8. https://doi.org/10.1186/1471-2148-11-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshida K, Noguchi K (2009) Differential gene expression profiles of the mitochondrial respiratory components in illuminated Arabidopsis leaves. Plant Cell Physiol 50:1449–1462

    Article  CAS  Google Scholar 

  • Yu CP, Chen SCC, Chang YM, Liu WY, Lin HH, Lin JJ, Chen HJ, Lu YJ, Wu YH, Lu MYJ, Lu C-H, Shih ACC, Ku MSB, Shiu SH, Wu SH, Li WH (2015) Transcriptome dynamics of developing maize leaves and genome wide prediction of cis elements and their cognate transcription factors. Proc Natl Acad Sci 112:E2477–E2486. https://doi.org/10.1073/pnas.1500605112

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Kimatu JN, Xu K, Liu B (2010) DNA cytosine methylation in plant development. J Genet Genom 37:1–12. https://doi.org/10.1016/S1673-8527(09)60020-5

    Article  CAS  Google Scholar 

  • Zhang LT, Zhang ZS, Gao HY, Xue ZC, Yang C, Meng XL, Meng QW (2011) Mitochondrial alternative oxidase pathway protects plants against photoinhibition by alleviating inhibition of the repair of photodamaged PSII through preventing formation of reactive oxygen species in Rumex K-1 leaves. Physiol Plant 143:396–407

    Article  CAS  Google Scholar 

  • Zhang L-T, Zhang Z-S, Gao H-Y, Meng X-L, Yang C, Liu J-G, Meng Q-W (2012) The mitochondrial alternative oxidase pathway protects the photosynthetic apparatus against photodamage in Rumex K-1 leaves. BMC Plant Biol 12:40

    Article  Google Scholar 

  • Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S (2006) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39:61. https://doi.org/10.1038/ng1929

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman RC (2007) Light and photosynthesis in seagrass meadows seagrasses: biology, ecology and conservation. Springer, Dordrecht, pp 303–321

    Google Scholar 

Download references

Acknowledgements

MR was supported by a SZN Ph.D. fellowship via the Open University. We deeply thank Pasquale De Luca (SZN–Molecular Biology Service) for his invaluable technical support in RT-qPCR experiments. We are grateful to Özge Tutar and Roberto Gallia for their help with the mesocosm system maintenance and sample collection, the SZN–MARE service (MEDA unit) for the sampling of seagrass ramets, and Maurizio Ribera d’Alcalà for the kind provision of seawater spectra for setting LED lamp illumination.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Ruocco.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Responsible Editor: T. Reusch.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewed by A. Jüterbock and an undisclosed expert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 356 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruocco, M., Marín-Guirao, L. & Procaccini, G. Within- and among-leaf variations in photo-physiological functions, gene expression and DNA methylation patterns in the large-sized seagrass Posidonia oceanica. Mar Biol 166, 24 (2019). https://doi.org/10.1007/s00227-019-3482-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-019-3482-8

Navigation