Marine Biology

, 166:27 | Cite as

Functional convergence in macroalgal assemblages of isolated coral reefs in the Mozambique Channel

  • Nicolas LoiseauEmail author
  • C. E. Payri
  • L. Mattio
  • S. Andréfouët
  • M. Grellier
  • M. Zubia
Original paper


The understanding of macroalgae functions and processes requires a good understanding of the spatial distribution of the functional diversity of macroalgae. In coral reef environments, this information remains fragmentary. Here, based on 314 species sorted according to a set of 10 functional traits, the functional niches of macroalgae at three remote coral reefs of the Îles Éparses in the Indian Ocean (Europa, Glorioso, and Juan de Nova) are described. For the comparison of intra- and inter-reef functional structures, we characterized both taxonomic and functional beta diversities, and their turnover and nestedness-resultant components. Within the three reefs, we observed strong taxonomic and functional dissimilarities across sampling sites, mainly determined by turnover. Null models highlighted several processes, which structured macroalgal assemblages across sites: a combined effect of environmental variables (geomorphology and wave exposure), limiting similarity and stochastic effects. At the inter-reef scale, the three reefs only shared a small number of species, but the functional beta diversity between Glorioso and Juan de Nova was weak. This suggested that although assemblages were different, fairly similar environmental conditions may have homogenized macroalgae functions through both ecological and evolutionary scale processes. Our results support the idea that macroalgal assemblages can provide similar functional trait portfolios, despite distinct species composition. We stress the need to focus on macroalgae life-history traits for a better understanding of the processes structuring their communities.



The BIORECIE research program was led by the Centre National de la Recherche Scientifique, the Institut d’Ecologie et Environnement (CNRS-INEE) with the financial support from the Institut National des Sciences de l’Univers (INSU), the Institut de Recherche pour le Développement (IRD), the Agence des Aires Marines Protégées (AAMP), the Fondation pour la Recherche sur la Biodiversité (FRB), the Terres Australes et Antarctiques françaises (TAAF), and the Veolia Environment foundation. We warmly thank Pascale Chabanet for leading the BIORECIE program and offering the unique opportunity to sample in the Îles Éparses. We are very grateful to the military personnel stationed on each of the reefs for providing logistical supports. The crew of the R/V Antsiva greatly helped for the sampling of the three reefs. We acknowledge three anonymous reviewers and Editor Dr. Roleda for their comments that helped clarifying several aspects of the study.

Author contributions

Authors whose names appear on the submission have contributed sufficiently to the scientific work and, therefore, share collective responsibility and accountability for the results.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights statement

This article does not contain any studies with human participants or animals performed by any of the authors. All necessary permits for sampling and observational fields have been obtained by the authors from the competent authorities (TAAF) and are mentioned in the acknowledgments. We took care not to disturb wildlife or the surrounding environment more than necessary to gather the samples.

Informed consent

Consent to submit has been received explicitly from all the authors, as well as from the responsible authorities—tacitly or explicitly—at the institute/organization where the work has been carried out, before the work is submitted.

Supplementary material

227_2019_3470_MOESM1_ESM.docx (7.5 mb)
Supplementary material 1 (DOCX 7675 kb)
227_2019_3470_MOESM2_ESM.csv (16 kb)
Supplementary material 2 (CSV 15 kb)


  1. Ainsworth TD, Heron SF, Ortiz JC, Mumby PJ, Grech A, Ogawa D, Eakin MC, Leggat W (2016) Climate change disables coral bleaching protection on the Great Barrier Reef. Science 352:338–342PubMedCrossRefGoogle Scholar
  2. Andréfouët S, Chagnaud N, Kranenburg C (2009) Atlas des récifs coralliens de l’Océan Indien Ouest Atlas of Western Indian Ocean Coral Reefs Centre IRD de Nouméa. Nouméa, Nouvelle-Calédonie 29:3097–3108Google Scholar
  3. Andréfouët S, Payri C, Van Wynsberge S, Lauret O, Alefaio S, Preston G, Yamano H, Baudel S (2017) The timing and the scale of the proliferation of Sargassum polycystum in Funafuti Atoll. J Appl Phycol, Tuvalu. CrossRefGoogle Scholar
  4. Balata D, Piazzi L, Rindi F (2011) Testing a new classification of morphological functional groups of marine macroalgae for the detection or responses to disturbance. Mar Biol 158:2459–2469CrossRefGoogle Scholar
  5. Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19:134–143CrossRefGoogle Scholar
  6. Baselga A (2012) The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Glob Ecol Biogeogr 21:1223–1232CrossRefGoogle Scholar
  7. Baselga A, Orme CDL (2012) Betapart: an R package for the study of beta diversity. Methods Ecol Evol 3:808–812CrossRefGoogle Scholar
  8. Baselga A, Leprieur F (2015) Comparing methods to separate components of beta diversity. Methods Ecol Evol 6:1069–1079CrossRefGoogle Scholar
  9. Beck J, Holloway JD, Schwanghart W (2013) Undersampling and the measurement of beta diversity. Methods Ecol Evol 4:370–382CrossRefGoogle Scholar
  10. Berteotti S, Ballottari M, Bassi R (2016) Increased biomass productivity in green algae by tuning non-photochemical quenching. Sci Rep. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bittick SJ, Clausing RJ, Fong CR, Fong P (2016) Bolstered physical defences under nutrient-enriched conditions may facilitate a secondary foundational algal species in the South Pacific. J Ecol 104:646–653CrossRefGoogle Scholar
  12. Blanfuné A, Thibaut T, Boudouresque CF, Mačić V, Markovic L, Palomba L, Verlaque M, Boissery P (2017) The CARLIT method for the assessment of the ecological quality of European Mediterranean waters: relevance, robustness and possible improvements. Ecol Ind 72:249–259CrossRefGoogle Scholar
  13. Bracken ME, Williams SL (2016) The underappreciated role of life history in mediating the functional consequences of biodiversity change. Oikos 126:488–496CrossRefGoogle Scholar
  14. Burkepile DE, Hay ME (2010) Impact of herbivore identity on algal succession and coral growth on a Caribbean reef. PLoS One 5:e8963PubMedPubMedCentralCrossRefGoogle Scholar
  15. Buzzard V, Hulshof CM, Birt T, Violle C, Enquist BJ (2015) Re-growing a tropical dry forest: functional plant trait composition and community assembly during succession. Funct Ecol 6:1365–2435Google Scholar
  16. Carassou L, Léopold M, Guillemot N, Wantiez L, Kulbicki M (2013) Does herbivorous fish protection really improve coral reef resilience? A case study from New Caledonia (South Pacific). PLoS One 8:e60564PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cardoso P, Borges PA, Veech JA (2009) Testing the performance of beta diversity measures based on incidence data: the robustness to undersampling. Divers Distrib 15:1081–1090CrossRefGoogle Scholar
  18. Chabanet P, Bigot L, Nicet JB, Durville P, Massé L, Mulochau T, Russo C, Tessier E, Obura D (2016) Coral reef monitoring in the Iles Eparses, Mozambique Channel (2011–2013). Acta Oecol 72:62–71CrossRefGoogle Scholar
  19. Chapin FS, Bret‐Harte MS, Hobbie SE, Zhong H (1996) Plant functional types as predictors of transient responses of arctic vegetation to global change. J Veg Sci 7:347–358CrossRefGoogle Scholar
  20. Chase JM, Kraft NJB, Smith KG, Vellend M, Inouye BD (2011) Using null models to disentangle variation in community dissimilarity from variation in B-diversity. Ecosphere 2:art24CrossRefGoogle Scholar
  21. Cheal AJ, MacNeil MA, Cripps E, Emslie MJ, Jonker M, Schaffelke B, Sweatman H (2010) Coral–macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef. Coral Reefs 29:1005–1015CrossRefGoogle Scholar
  22. Cinner JE, McClanahan TR, MacNeil MA, Graham NA, Daw TM, Mukminin A, Fearyg DA, Rabearisoah AL, Wamukotai A, Jiddawik N, Campbellf SJ, Bairda AH, Januchowski-Hartleya FA, Hamedk S, Laharil R, Morove T, Campbell SJ (2012) Comanagement of coral reef social-ecological systems. Proc Natl Acad Sci USA 109:5219–5222PubMedCrossRefGoogle Scholar
  23. De’ath G, Fabricius K (2010) Water quality as a regional driver of coral biodiversity and macroalgae on the Great Barrier Reef. Ecol Appl 20:840–850PubMedCrossRefGoogle Scholar
  24. Dı́az S, Cabido M (2001) Vive la difference: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655CrossRefGoogle Scholar
  25. Diaz-Pulido G, Gouezo M, Tilbrook B, Dove S, Anthony K (2011) High CO2 enhances the competitive strength of seaweeds over corals. Ecol Lett 14:156–162PubMedPubMedCentralCrossRefGoogle Scholar
  26. Done TJ (1992) Phase shifts in coral reef communities and their ecological significance in the ecology of Mangrove and related ecosystems. Springer, Amsterdam, pp 121–132CrossRefGoogle Scholar
  27. Doropoulos C, Roff G, Visser MS, Mumby PJ (2016) Sensitivity of coral recruitment to subtle shifts in early community succession. Ecology 98:304–314CrossRefGoogle Scholar
  28. Evans RD, Wilson SK, Field SN, Moore JAY (2014) Importance of macroalgal fields as coral reef fish nursery habitat in north-west Australia. Mar Biol 161:599–607CrossRefGoogle Scholar
  29. Fong P, Paul VJ (2011) Coral reef algae in coral reefs: an ecosystem in transition. Springer, Amsterdam, pp 241–272CrossRefGoogle Scholar
  30. Gabriel D, Draisma SG, Schmidt WE, Schils T, Sauvage T, Maridakis C, Fredirico D, Harris JD, Fredericq S (2017) Beneath the hairy look: the hidden reproductive diversity of the Gibsmithia hawaiiensis complex (Dumontiaceae, Rhodophyta). J Phycol 53:1171–1192PubMedCrossRefGoogle Scholar
  31. Gagic V, Bartomeus I, Jonsson T, Taylor A, Winqvist C, Fischer C, Tscharntke T (2015) Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proc R Soc B 282:20142620PubMedCrossRefGoogle Scholar
  32. Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19CrossRefGoogle Scholar
  33. Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics:857–871Google Scholar
  34. Graham NA, Bellwood DR, Cinner JE, Hughes TP, Norström AV, Nyström M (2013) Managing resilience to reverse phase shifts in coral reefs. Front Ecol Environ 11:541–548CrossRefGoogle Scholar
  35. Greff S, Aires T, Serrão EA, Engelen AH, Thomas OP, Pérez T (2017) The interaction between the proliferating macroalga Asparagopsis taxiformis and the coral Astroides calycularis induces changes in microbiome and metabolomic fingerprints. Sci Rep 7:42625PubMedPubMedCentralCrossRefGoogle Scholar
  36. Griffin JN, Méndez V, Johnson AF, Jenkins SR, Foggo A (2009) Functional diversity predicts overyielding effect of species combination on primary productivity. Oikos 118:37–44CrossRefGoogle Scholar
  37. Grime JP (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:902–910CrossRefGoogle Scholar
  38. Guillemot N, Kulbicki M, Chabanet P, Vigliola L (2011) Functional redundancy patterns reveal non-random assembly rules in a species-rich marine assemblage. PLoS One 6:e26735PubMedPubMedCentralCrossRefGoogle Scholar
  39. Hay ME, Fenical W (1988) Marine plant-herbivore interactions: the ecology of chemical defense. Annu Rev Ecol Syst 19:111–145CrossRefGoogle Scholar
  40. Ho M, Carpenter RC (2017) Differential growth responses to water flow and reduced pH in tropical marine macroalgae. J Exp Mar Biol Ecol 491:58–65CrossRefGoogle Scholar
  41. Jänes H, Kotta J, Pärnoja M, Crowe TP, Rindi F, Orav-Kotta H (2016) Functional traits of marine macrophytes predict primary production. Funct Ecol 31:975–986CrossRefGoogle Scholar
  42. Jompa J, McCook LJ (2003) Coral-algal competition: macroalgae with different properties have different effects on corals. Mar Ecol Prog Ser 258:87–95CrossRefGoogle Scholar
  43. Jorry SJ, Camoin GF, Jouet G, Le Roy P, Vella C, Courgeon S, Prat S, Fontanier C, Victorien P, Boulle J, Caline B, Borgomano J (2016) Modern sediments and Pleistocene reefs from isolated carbonate platforms (Iles Eparses, SW Indian Ocean): a preliminary study. Acta Oecol 72:129–143CrossRefGoogle Scholar
  44. Keith SA, Kerswell AP, Connolly SR (2014) Global diversity of marine macroalgae: environmental conditions explain less variation in the tropics. Glob Ecol Biogeogr 23:517–529CrossRefGoogle Scholar
  45. Kinlan BP, Gaines SD (2003) Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84:2007–2020CrossRefGoogle Scholar
  46. Kissling WD, Walls R, Bowser A, Jones MO, Kattge J, Agosti D, Amengual J, Basset A, van Bodegom PM, Cornelissen JHC, Denny EG, Deudero S, Egloff W, Elmendorf SC, Alonso García E, Jones KD, Jones OR, Lavorel S, Lear D, Navarro LM, Pawar S, Pirzl R, Rüger N, Sal S, Salguero-Gómez R, Schigel D, Schulz K-S, Skidmore A, Guralnick RP (2018) Towards global data products of Essential Biodiversity Variables on species traits. Nat Ecol Evol 2(10):1531–1540PubMedCrossRefGoogle Scholar
  47. Koch M, Bowes G, Ross C, Zhang XH (2013) Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob Change Biol 19:103–132CrossRefGoogle Scholar
  48. Kraft NJB, Comita LS, Chase JM, Sanders NJ, Swenson NG, Crist TO, Stegen JC, Vellend M, Boyle B, Anderson MJ, Cornell HV, Davies KF, Freestone AL, Inouye BD, Harrison SP, Myers JA (2011) Disentangling the drivers of B diversity along latitudinal and elevational gradients. Science 333:1755–1758PubMedCrossRefGoogle Scholar
  49. Kulbicki M, Beets J, Chabanet P, Cure K, Darling E, Floeter SR, Letourneur Y (2012) Distributions of Indo-Pacific lionfishes Pterois spp. in their native ranges: implications for the Atlantic invasion. Mar Ecol Prog Ser 446:189–205CrossRefGoogle Scholar
  50. Lapointe BE, Barile PJ, Littler MM, Littler DS (2005) Macroalgal blooms on southeast Florida coral reefs II cross-shelf discrimination of nitrogen sources indicates widespread assimilation of sewage nitrogen. Harmful Algae 4:1106–1122CrossRefGoogle Scholar
  51. Lavorel S, Grigulis K, McIntyre S, Williams NS, Garden D, Dorrough J, Berman S, Quétier F, Thébault A, Bonis A (2008) Assessing functional diversity in the field–methodology matters! Funct Ecol 22:134–147Google Scholar
  52. Legendre P (2014) Interpreting the replacement and richness difference components of beta diversity. Glob Ecol Biogeogr 23(11):1324–1334CrossRefGoogle Scholar
  53. Littler MM (1980) Morphological form and photosynthetic performances of marine macroalgae: tests of a functional/form hypothesis. Bot Mar 23:161–166CrossRefGoogle Scholar
  54. Littler MM, Littler DS (1980) The evolution of thallus form and survival strategies in benthic marine macroalgae: field and laboratory tests of a functional form model. Am Nat 116:25–44CrossRefGoogle Scholar
  55. Littler MM, Littler DS (1984) Relationships between macroalgal functional form groups and substrata stability in a subtropical rocky-intertidal system. J Exp Mar Biol Ecol 74:13–34CrossRefGoogle Scholar
  56. Littler MM, Littler DS, Taylor PR (1983) Evolutionary strategies in a tropical barrier reef system: functional-form groups of marine macroalgae. J Phycol 19:229–237CrossRefGoogle Scholar
  57. Loiseau N, Gaertner JC (2015) Indices for assessing coral reef fish biodiversity: the need for a change in habits. Ecol Evol 5:4018–4027PubMedPubMedCentralCrossRefGoogle Scholar
  58. Loiseau N, Legras G, Gaertner JC, Verley P, Chabanet P, Mérigot B (2017) Performance of partitioning functional beta-diversity indices: influence of functional representation and partitioning methods. Glob Ecol Biogeogr 26:753–762CrossRefGoogle Scholar
  59. Lotze HK, Schramm W (2000) Ecophysiological traits explain species dominance patterns in macroalgal blooms. J Phycol 36:287–295CrossRefGoogle Scholar
  60. Machendiranathan M, Senthilnathan L, Ranith R, Saravanakumar A, Thangaradjou T, Choudhry SB, Sasamal SK (2016) Trend in coral-algal phase shift in the Mandapam group of islands, Gulf of Mannar Marine Biosphere Reserve. India J Ocean Univ China 15:1080–1086CrossRefGoogle Scholar
  61. Madin JS, Hoogenboom MO, Connolly SR, Darling ES, Falster DS, Huang D, Keith SA, Mizerek T, Pandolfi JM, Putnam HM, Baird AH (2016) A trait-based approach to advance coral reef science. Trends Ecol Evol 31:419–428PubMedCrossRefGoogle Scholar
  62. Maire E, Grenouillet G, Brosse S, Villéger S (2015) How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Glob Ecol Biogeogr 24:728–740CrossRefGoogle Scholar
  63. Májeková M, Paal T, Plowman NS, Bryndová M, Kasari L, Norberg A, Le Bagousse-Pinguet Y (2016) Evaluating functional diversity: missing trait data and the importance of species abundance structure and data transformation. PLoS One 11:e0149270PubMedPubMedCentralCrossRefGoogle Scholar
  64. Mattio L, Zubia M, Maneveldt GW, Anderson RJ, Bolton JJ, de Gaillande C, Payri CE (2016) Marine flora of the Iles Eparses (Scattered Islands): a longitudinal transect through the Mozambique Channel. Acta Oecol 72:33–40CrossRefGoogle Scholar
  65. McCook L, Jompa J, Diaz-Pulido G (2001) Competition between corals and algae on coral reefs: a review of evidence and mechanisms. Coral Reefs 19:400–417CrossRefGoogle Scholar
  66. McCoy SJ, Kamenos NA (2015) Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological, and geochemical responses to global change. J Phycol 51:6–24PubMedPubMedCentralCrossRefGoogle Scholar
  67. Moberg F, Folke C (1999) Ecological goods and services of coral reef ecosystems. Ecol Econ 29:215–233CrossRefGoogle Scholar
  68. Montaggioni LF, Braithwaite CJR (2009) Chapter five patterns of carbonate production and deposition on Reefs. Develop Marine Geol 5:171–222CrossRefGoogle Scholar
  69. Mora C, Graham NA, Nyström M (2016) Ecological limitations to the resilience of coral reefs. Coral Reefs 35:1271–1280CrossRefGoogle Scholar
  70. Mouillot D, Graham NA, Villéger S, Mason NW, Bellwood DR (2013) A functional approach reveals community responses to disturbances. Trends Ecol Evol 28(3):167–177PubMedCrossRefGoogle Scholar
  71. Munday PL, Jones GP, Pratchett MS, Williams AJ (2008) Climate change and the future for coral reef fishes. Fish Fish 9:261–285CrossRefGoogle Scholar
  72. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2016) Vegan: community ecology package version 2.3-5. R Foundation, Vienna, AustriaGoogle Scholar
  73. Paddack MJ, Reynolds JD, Aguilar C, Appeldoorn RS, Beets J, Burkett EW, Chittaro PM, Clarke K, Esteves R, Forrester GE (2009) Recent region-wide declines in Caribbean reef fish abundance. Curr Biol 19:590–595PubMedCrossRefGoogle Scholar
  74. Parravicini V, Villeger S, McClanahan TR, Arias-Gonzalez JE, Bellwood DR, Belmaker J, Chabanet P, Floeter SR, Friedlander AM, Guilhaumon F, Vigliola L, Kulbicki M, Mouillot D (2014) Global mismatch between species richness and vulnerability of reef fish assemblages. Ecol Lett 17:1101–1110PubMedCrossRefGoogle Scholar
  75. Payri CE (2000) Production primaire et calcification des algues benthiques en milieu corallien. Oceanis 26:427–464Google Scholar
  76. Payri C, N’Yeurt ADR, Mattio L (2012) Benthic algal and seagrass communities in Baa atoll, Maldives. Atoll Res Bull 590:31–66Google Scholar
  77. Pennings SC, Paul VJ (1992) Effect of plant toughness, calcification, and chemistry on herbivory by Dolabella auricularia. Ecology 73:1606–1619CrossRefGoogle Scholar
  78. Petchey OL, Gaston KJ (2002) Functional diversity (FD), species richness and community composition. Eco Lett 5:402–411CrossRefGoogle Scholar
  79. Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9:741–758PubMedCrossRefGoogle Scholar
  80. Petchey OL, Hector A, Gaston KJ (2004) How do different measures of functional diversity perform? Ecology 85:847–857CrossRefGoogle Scholar
  81. Podani J (1999) Extending gower’s general coefficient of similarity to ordinal characters. Taxon, extending gower's general coefficient of similarity to ordinal characters. Taxon 48:331–340CrossRefGoogle Scholar
  82. Poupin J, Zubia M, Gravier-Bonnet N, Chabanet P, Duhec A (2013) Crustacea Decapoda of Glorieuses Islands, with notes on the distribution of the coconut crab (Birgus latro) in the western Indian Ocean. Mar Biodivers Rec 6:e125CrossRefGoogle Scholar
  83. Qian H, Ricklefs RE, White PS (2005) Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecol Lett 8:15–22CrossRefGoogle Scholar
  84. Quétel C, Marinesque S, Ringler D, Fillinger L, Changeux T, Marteau C, Troussellier M (2016) Iles Eparses (SW Indian Ocean) as reference ecosystems for environmental research. Acta Oecol 72:1–8CrossRefGoogle Scholar
  85. R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  86. Rasher DB, Hay ME (2010) Chemically rich seaweeds poison corals when not controlled by herbivores. Proc Natl Acad Sci USA 107:9683–9688PubMedCrossRefGoogle Scholar
  87. Rasher DB, Hay ME (2014) Competition induces allelopathy but suppresses growth and anti-herbivore defence in a chemically rich seaweed. Proc R Soc B 281:20132615PubMedCrossRefGoogle Scholar
  88. Rasher DB, Stout EP, Engel S, Kubanek J, Hay ME (2011) Macroalgal terpenes function as allelopathic agents against reef corals. Proc Natl Acad Sci USA 108:17726–17731PubMedCrossRefGoogle Scholar
  89. Ricotta C (2005) A note on functional diversity measures. Basic Appl Ecol 6(5):479–486CrossRefGoogle Scholar
  90. Rossier O, Kulbicki M (2000) A comparison of fish assemblages from two types of algal beds and coral reefs in the south-west lagoon of New Caledonia. Cybium 24:3–26Google Scholar
  91. Saunders GW (2005) Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Proc R Soc B 360:1879–1888Google Scholar
  92. Segar ST, Pereira RA, Compton SG, Cook JM (2013) Convergent structure of multitrophic communities over three continents. Ecol Lett 16:1436–1445PubMedCrossRefGoogle Scholar
  93. Steneck RS, Dethier MN (1994) A functional group approach to the structure of algal-dominated communities. Oikos 69:476–498CrossRefGoogle Scholar
  94. Steneck RS, Watling L (1982) Feeding capabilities and limitation of herbivorous molluscs: a functional group approach. Mar Biol 68:299–319CrossRefGoogle Scholar
  95. Stiger V, Payri CE (1999a) Spatial and temporal patterns of settlement of the brown macroalgae Turbinaria ornata and Sargassum mangarevense in a coral reef on Tahiti. Mar Ecol Prog Ser 191:91–100CrossRefGoogle Scholar
  96. Stiger V, Payri CE (1999b) Spatial and seasonal variations in the biological characteristics of two invasive brown algae, Turbinaria ornata (Turner) J Agardh and Sargassum mangarevense (Grunow) Setchell (Sargassaceae, Fucales) spreading on the reefs of Tahiti (French Polynesia). Bot Mar 42:295–306Google Scholar
  97. Stuart-Smith RD, Bates AE, Lefcheck JS, Duffy JE, Baker SC, Thomson RJ, Stuart-Smith JF, Hill NA, Kininmonth SJ, Airoldi L, Becerro MA, Campbell SJ, Dawson TP, Navarrete SA, Soler GA, Strain EMA, Willis TJ, Becerro MA (2013) Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501:539–542PubMedCrossRefGoogle Scholar
  98. Teresa FB, Casatti L (2017) Trait-based metrics as bioindicators: responses of stream fish assemblages to a gradient of environmental degradation. Ecol Indics 75:249–258CrossRefGoogle Scholar
  99. Thurber RV, Burkepile DE, Correa AM, Thurber AR, Shantz AA, Welsh R, Pritchard C, Rosales S (2012) Macroalgae decrease growth and alter microbial community structure of the reef-building coral, Porites astreoides. PLoS One 7(9):e44246PubMedPubMedCentralCrossRefGoogle Scholar
  100. Ulrich W, Gotelli NJ (2007) Null model analysis of species nestedness patterns. Ecology 88(7):1824–1831PubMedCrossRefGoogle Scholar
  101. Veech JA (2012) Significance testing in ecological null models. Theor Ecol 5(4):611–616CrossRefGoogle Scholar
  102. Vieira C, D’hondt S, De Clerck O, Payri CE (2014) Toward an inordinate fondness for stars, beetles and Lobophora? Species diversity of the genus Lobophora (Dictyotales, Phaeophyceae) in New Caledonia. J Phycol 50:1101–1119PubMedCrossRefGoogle Scholar
  103. Vieira C, Camacho O, Wynne MJ, Mattio L, Anderson RJ, Bolton JJ, Sanson M, D’Hondt S, Fredericq S, Payri C, De Clerck O (2015) Matching names and clades in the brown algal genus Lobophora (Dictyotales, Phaeophyceae): an effort to integrate type specimens in modern taxonomy. Eur J Phycol 50:29Google Scholar
  104. Villéger S, Mason NW, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301PubMedCrossRefGoogle Scholar
  105. Villéger S, Grenouillet G, Brosse S (2013) Decomposing functional b-diversity reveals that low functional b-diversity is driven by low functional turnover in European fish assemblages. Glob Ecol Biogeogr 22:671–681CrossRefGoogle Scholar
  106. Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116:882–892CrossRefGoogle Scholar
  107. Wenger AS, Fabricius KE, Jones GP, Brodie JE (2015) 15 Effects of sedimentation, eutrophication, and chemical pollution on coral reef fishes. Ecology of fishes on coral Reefs, vol 145. Cambridge University Press, CambridgeGoogle Scholar
  108. Wickham H, Cook D, Hofmann H, Buja A (2011) Tourr: an R package for exploring multivariate data with projections. J Stat Softw 40:1–18Google Scholar
  109. Xu M, Sakamoto S, Komatsu T (2016) Attachment strength of the subtidal seaweed Sargassum horneri (Turner) C Agardh varies among development stages and depths. J Appl Phycol 28:3679–3687PubMedPubMedCentralCrossRefGoogle Scholar
  110. Zubia M, Turquet J, Golubic S (2016) Benthic cyanobacterial diversity of Iles Eparses (Scattered Islands) in the Mozambique Channel. Acta Oecol 72:21–32CrossRefGoogle Scholar
  111. Zuccarello GC, West JA (2003) Multiple cryptic species: molecular diversity and reproductive isolation in the Bostrychia radicans/B. moritziana complex (Rhodomelaceae, Rhodophyta) with focus on North American isolates. J Phycol 39(5):948–959CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Université de Polynésie française, UMR-241 EIO, LabEx-CORAILTahitiFrench Polynesia
  2. 2.MARBEC, Univ Montpellier, IRD, CNRS, IFREMERMontpellierFrance
  3. 3.UMR 9220 ENTROPIE(Institut de Recherche pour le Développement, Université de la Réunion, Centre National Recherche Scientifique)NoumeaNew Caledonia
  4. 4.Department of Biological SciencesUniversity of Cape TownCape TownSouth Africa
  5. 5.CSIRO, Ocean and Atmosphere FlagshipCrawleyAustralia

Personalised recommendations