Skip to main content

Advertisement

Log in

Marine infrastructure supports abundant, diverse fish assemblages at the expense of beta diversity

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Anthropogenic structures are increasingly common in natural environments and present novel habitats for resident organisms. Marine breakwalls are similar to natural reefs in that they also provide habitat for diverse assemblages of mobile animals. However, it is unclear if fish assemblages on these artificial structures differ from those on neighbouring natural reefs in ecologically important ways. In this study, we compared fish assemblages at breakwalls and natural reefs in three different regions along 530 km of the East Australian coast. We found that fish assemblages associated with breakwalls were more diverse than those associated with natural reefs in two of the three regions studied. The functional niches being filled were similar at both habitats, with the exception of a higher abundance of piscivores at some breakwalls. However, β diversity tended low on the homogenous breakwalls compared to more heterogeneous natural reefs and was significantly lower at one region. The habitat heterogeneity model suggests that structural alterations to the layout of infrastructure could contribute to improving their ecological effects, potentially increasing β diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abelson A, Shlesinger Y (2002) Comparison of the development of coral and fish communities on rock-aggregated artificial reefs in Eilat, Red Sea. ICES J Mar Sci 59:S122–S126

    Article  Google Scholar 

  • Aguilera MA, Broitman BR, Thiel M (2014) Spatial variability in community composition on a granite breakwater versus natural rocky shores: lack of microhabitats suppresses intertidal biodiversity. Mar Pollut Bull 87:257–268

    Article  PubMed  CAS  Google Scholar 

  • Anderson MJ (2001) Permutation tests for univariate or multivariate analysis of variance and regression. Can J Fish Aquat Sci 58:626–639

    Article  Google Scholar 

  • Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253

    Article  PubMed  Google Scholar 

  • Anderson MJ, Millar RB (2004) Spatial variation and effects of habitat on temperate reef fish assemblages in northeastern New Zealand. J Exp Mar Biol Ecol 305:191–221

    Article  Google Scholar 

  • Anderson MJ, Walsh DC (2013) PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol Monogr 83:557–574

    Article  Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA + for PRIMER: Guide to Software and Statistical Methods. PRIMER-E Ltd., Plymouth

    Google Scholar 

  • Bishop MJ, Mayer-Pinto M, Airoldi L, Firth LB, Morris RL, Loke LH, Hawkins SJ, Naylor LA, Coleman RA, Chee SY (2017) Effects of ocean sprawl on ecological connectivity: impacts and solutions. J Exp Mar Biol Eco 492:7–30

    Article  Google Scholar 

  • Branden KL, Pollard DA, Reimers HA (1994) A review of recent artificial reef developments in Australia. Bull Mar Sci 55:982–994

    Google Scholar 

  • Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349

    Article  Google Scholar 

  • Bremner J, Rogers SI, Frid CLJ (2006) Methods for describing ecological functioning of marine benthic assemblages using biological traits analysis (BTA). Ecol Indic 6:609–622

    Article  Google Scholar 

  • Brickhill M, Lee S, Connolly R (2005) Fishes associated with artificial reefs: attributing changes to attraction or production using novel approaches. J Fish Biol 67:53–71

    Article  Google Scholar 

  • Browne MA, Chapman MG (2011) Ecologically informed engineering reduces loss of intertidal biodiversity on artificial shorelines. Environ Sci Technol 45:8204–8207

    Article  PubMed  CAS  Google Scholar 

  • Bulleri F, Chapman MG (2010) The introduction of coastal infrastructure as a driver of change in marine environments. J Appl Ecol 47:26–35

    Article  Google Scholar 

  • Burchmore J, Pollard D, Bell J, Middleton M, Pease B, Matthews J (1985) An ecological comparison of artificial and natural rocky reef fish communities in Botany Bay, New South Wales, Australia. Bull Mar Sci 37:70–85

    Google Scholar 

  • Burke L, Kura Y, Kassem K, Revenga C, Spalding M, McAllister D, Caddy J (2001) Coastal ecosystems. World Resources Institute, Washington, DC

    Google Scholar 

  • Burt J, Bartholomew A, Usseglio P, Bauman A, Sale P (2009) Are artificial reefs surrogates of natural habitats for corals and fish in Dubai, United Arab Emirates? Coral Reefs 28:663–675

    Article  Google Scholar 

  • Burt JA, Bartholomew A, Feary DA (2012) Man-Made Structures as Artificial Reefs in the Gulf. In: Riegl B, Purkis S (eds) Coral Reefs of the Gulf. Coral Reefs of the World, vol 3. Springer, Dordrecht

    Google Scholar 

  • Burt JA, Feary DA, Cavalcante G, Bauman AG, Usseglio P (2013) Urban breakwaters as reef fish habitat in the Persian Gulf. Mar Pollut Bull 72:342–350

    Article  PubMed  CAS  Google Scholar 

  • Chapman M, Underwood A (2011) Evaluation of ecological engineering of “armoured” shorelines to improve their value as habitat. J Exp Mar Biol Ecol 400:302–313

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER V6: user manual–tutorial. Plymouth Marine Laboratory, Plymouth

    Google Scholar 

  • Clynick B, Chapman M, Underwood A (2008) Fish assemblages associated with urban structures and natural reefs in Sydney, Australia. Austral Ecol 33:140–150

    Article  Google Scholar 

  • Condit R, Pitman N, Leigh EG, Chave J, Terborgh J, Foster RB, Núnez P, Aguilar S, Valencia R, Villa G (2002) Beta-diversity in tropical forest trees. Science 295:666–669

    Article  PubMed  CAS  Google Scholar 

  • Connell SD, Irving AD (2008) Integrating ecology with biogeography using landscape characteristics: a case study of subtidal habitat across continental Australia. J Biogeogr 35:1608–1621

    Article  Google Scholar 

  • Dafforn KA, Glasby TM, Airoldi L, Rivero NK, Mayer-Pinto M, Johnston EL (2015) Marine urbanization: an ecological framework for designing multifunctional artificial structures. Front Ecol Environ 13:82–90

    Article  Google Scholar 

  • Davis TR, Smith SD (2017) Proximity effects of natural and artificial reef walls on fish assemblages. Reg Stud Mar Sci 9:17–23

    Article  Google Scholar 

  • Doak DF (1995) Source-sink models and the problem of habitat degradation: general models and applications to the Yellowstone grizzly. Conserv Biol 9:1370–1379

    Article  Google Scholar 

  • Duarte CM (2014) Global change and the future ocean: a grand challenge for marine sciences. Front Mar Sci 1:63

    Article  Google Scholar 

  • Duffy JE (2003) Biodiversity loss, trophic skew and ecosystem functioning. Ecol Lett 6:680–687

    Article  Google Scholar 

  • Duffy JE, Lefcheck JS, Stuart-Smith RD, Navarrete SA, Edgar GJ (2016) Biodiversity enhances reef fish biomass and resistance to climate change. Proc Natl Acad Sci 113:6230–6235

    Article  PubMed  CAS  Google Scholar 

  • Dugan J, Airoldi L, Chapman M, Walker S, Schlacher T, Wolanski E, McLusky D (2011) 8.02-Estuarine and coastal structures: environmental effects, a focus on shore and nearshore structures. Treatise Estuar Coast Sci 8:17–41

    Article  Google Scholar 

  • Dulvy N, Polunin NV, Mill A, Graham NA (2004) Size structural change in lightly exploited coral reef fish communities: evidence for weak indirect effects. Can J Fish Aquat Sci 61:466–475

    Article  Google Scholar 

  • Dwernychuk L, Boag D (1972) Ducks nesting in association with gulls—an ecological trap? Can J Zool 50:559–563

    Article  Google Scholar 

  • Edgar GJ, Stuart-Smith RD (2014) Systematic global assessment of reef fish communities by the Reef Life Survey program. Sci Data 1:140007

    Article  PubMed  PubMed Central  Google Scholar 

  • Edgar GJ, Stuart-Smith RD, Willis TJ, Kininmonth S, Baker SC, Banks S, Barrett NS, Becerro MA, Bernard ATF, Berkhout J, Buxton CD, Campbell SJ, Cooper AT, Davey M, Edgar SC, Forsterra G, Galvan DE, Irigoyen AJ, Kushner DJ, Moura R, Parnell PE, Shears NT, Soler G, Strain EMA, Thomson RJ (2014) Global conservation outcomes depend on marine protected areas with five key features. Nature 506:216–220

    Article  PubMed  CAS  Google Scholar 

  • Ellingsen K (2002) Spatial patterns of benthic diversity: is there a latitudinal gradient along the Norwegian continental shelf? J Anim Ecol 71:373–389

    Article  Google Scholar 

  • Ferrari R, Malcolm HA, Byrne M, Friedman A, Williams SB, Schultz A, Jordan AR, Figueira WF (2017) Habitat structural complexity metrics improve predictions of fish abundance and distribution. Ecography. https://doi.org/10.1111/ecog.02580

    Article  Google Scholar 

  • Field J, Clarke K, Warwick R (1982) A practical strategy for analyzing multispecies distribution patterns. Mar Ecol Prog Ser 8:37–52

    Article  Google Scholar 

  • Figueira W, Ferrari R, Weatherby E, Porter A, Hawes S, Byrne M (2015) Accuracy and precision of habitat structural complexity metrics derived from underwater photogrammetry. Remote Sens 7:15859

    Article  Google Scholar 

  • Fowler AM, Booth DJ (2013) Seasonal dynamics of fish assemblages on breakwaters and natural rocky reefs in a temperate estuary: consistent assemblage differences driven by sub-adults. PLoS One 8:e75790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gittman RK, Scyphers SB, Smith CS, Neylan IP, Grabowski JH (2016) Ecological consequences of shoreline hardening: a meta-analysis. Bioscience 66:763–773

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffiths SP (2012) Recreational catch composition, catch rates, effort and expenditure in a specialised land-based pelagic game fish fishery. Fish Res 127:40–44

    Article  Google Scholar 

  • Grossman GD, Jones GP, Seaman WJ Jr (1997) Do artificial reefs increase regional fish production? A review of existing data. Fisheries 22:17–23

    Article  Google Scholar 

  • Gürer S, Cevik E, Yüksel Y, Günbak A (2005) Stability of tetrapod breakwaters for different placing methods. J Coast Res 21:464–471

    Article  Google Scholar 

  • Hackradt CW, Félix-Hackradt FC, García-Charton JA (2011) Influence of habitat structure on fish assemblage of an artificial reef in southern Brazil. Mar Environ Res 72:235–247

    Article  PubMed  CAS  Google Scholar 

  • Harriott V, Smith S, Harrison PL (1994) Patterns of coral community structure of subtropical reefs in the Solitary Islands Marine Reserve, Eastern Australia. Mar Ecol Prog Ser 109:67–76

    Article  Google Scholar 

  • Heery EC, Bishop MJ, Critchley LP, Bugnot AB, Airoldi L, Mayer-Pinto M, Sheehan EV, Coleman RA, Loke LH, Johnston EL (2017) Identifying the consequences of ocean sprawl for sedimentary habitats. J Exp Mar Biol Ecol 492:31–48

    Article  Google Scholar 

  • Hewitt JE, Thrush SF, Halliday J, Duffy C (2005) The importance of small-scale habitat structure for maintaining beta diversity. Ecology 86:1619–1626

    Article  Google Scholar 

  • Hewitt JE, Thrush SF, Dayton PD (2008) Habitat variation, species diversity and ecological functioning in a marine system. J Exp Mar Biol Ecol 366:116–122

    Article  Google Scholar 

  • Jaccard P (1900) Contribution au problème de l; immigration post-glacière de la flore alpine: etude comparative de la flore alpine du massif du Wildhorn, du haut bassin du Trient et de la haute vallée de Bagnes

  • Jones G, Candy S (1981) Effects of dredging on the macrobenthic infauna of Botany Bay. Mar Freshw Res 32:379–398

    Article  Google Scholar 

  • Kelaher BP, Castilla JC (2005) Habitat characteristics influence macrofaunal communities in coralline turf more than mesoscale coastal upwelling on the coast of Northern Chile. Estuar Coast Shelf Sci 63:155–165

    Article  Google Scholar 

  • Koeck B, Tessier A, Brind’Amour A, Pastor J, Bijaoui B, Dalias N, Astruch P, Saragoni G, Lenfant P (2014) Functional differences between fish communities on artificial and natural reefs: a case study along the French Catalan coast. Aquat Biol 20:219–234

    Article  Google Scholar 

  • Kovalenko KE, Thomaz SM, Warfe DM (2012) Habitat complexity: approaches and future directions. Hydrobiologia 685:1–17

    Article  Google Scholar 

  • Kuiter RH (1993) Coastal fishes of south-eastern Australia. University of Hawaii Press, Honolulu

    Google Scholar 

  • Malcolm HA, Smith SD, Jordan A (2010) Using patterns of reef fish assemblages to refine a Habitat Classification System for marine parks in NSW, Australia. Aquat Conserv Mar Freshw Ecosyst 20:83–92

    Google Scholar 

  • Mandelbrot BB, Pignoni R (1983) The fractal geometry of nature. WH Freeman, New York

    Google Scholar 

  • Matias MG, Underwood A, Coleman RA (2007) Interactions of components of habitats alter composition and variability of assemblages. J Anim Ecol 76:986–994

    Article  PubMed  Google Scholar 

  • Mayer-Pinto M, Johnston E, Bugnot A, Glasby T, Airoldi L, Mitchell A, Dafforn K (2017) Building ‘blue’: an eco-engineering framework for foreshore developments. J Environ Manag 189:109–114

    Article  CAS  Google Scholar 

  • Morris RL, Deavin G, Hemelryk Donald S, Coleman RA (2016) Eco-engineering in urbanised coastal systems: consideration of social values. Ecol Manag Restor 17:33–39

    Article  Google Scholar 

  • Morris RL, Chapman MG, Firth LB, Coleman RA (2017) Increasing habitat complexity on seawalls: investigating large-and small-scale effects on fish assemblages. Ecol Evol 7:9567–9579

    Article  PubMed  PubMed Central  Google Scholar 

  • Morris RL, Porter AG, Figueira WF, Coleman RA, Fobert EK, Ferrari R (2018) Fish-smart seawalls: a decision tool for adaptive management of marine infrastructure. Front Ecol Environ 16:278–287

    Article  Google Scholar 

  • Nash KL, Graham NA, Wilson SK, Bellwood DR (2013) Cross-scale habitat structure drives fish body size distributions on coral reefs. Ecosystems 16:478–490

    Article  Google Scholar 

  • Nash KL, Allen CR, Barichievy C, Nyström M, Sundstrom S, Graham NAJ (2014) Habitat structure and body size distributions: cross-ecosystem comparison for taxa with determinate and indeterminate growth. Oikos 123:971–983

    Article  Google Scholar 

  • Pastor J, Koeck B, Astruch P, Lenfant P (2013) Coastal man-made habitats: potential nurseries for an exploited fish species, Diplodus sargus (Linnaeus, 1758). Fish Res 148:74–80

    Article  Google Scholar 

  • Pérez-Ruzafa A, Garcıa-Charton J, Barcala E, Marcos C (2006) Changes in benthic fish assemblages as a consequence of coastal works in a coastal lagoon: the Mar Menor (Spain, Western Mediterranean). Mar Pollut Bull 53:107–120

    Article  PubMed  CAS  Google Scholar 

  • Perkol-Finkel S, Benayahu Y (2005) Recruitment of benthic organisms onto a planned artificial reef: shifts in community structure one decade post-deployment. Mar Environ Res 59:79–99

    Article  PubMed  CAS  Google Scholar 

  • Perkol-Finkel S, Shashar N, Benayahu Y (2006) Can artificial reefs mimic natural reef communities? The roles of structural features and age. Mar Environ Res 61:121–135

    Article  PubMed  CAS  Google Scholar 

  • Perkol-Finkel S, Ferrario F, Nicotera V, Airoldi L (2012) Conservation challenges in urban seascapes: promoting the growth of threatened species on coastal infrastructures. J Appl Ecol 49:1457–1466

    Article  Google Scholar 

  • Piola RF, Johnston EL (2006) Differential tolerance to metals among populations of the introduced bryozoan Bugula neritina. Mar Biol 148:997–1010

    Article  Google Scholar 

  • Pulliam HR (1988) Sources, sinks, and population regulation. Am Nat 132:652–661

    Article  Google Scholar 

  • Rilov G, Benayahu Y (1998) Vertical artificial structures as an alternative habitat for coral reef fishes in disturbed environments. Mar Environ Res 45:431–451

    Article  CAS  Google Scholar 

  • Schneider DC, Gagnon J-M, Gilkinson KD (1987) Patchiness of epibenthic megafauna on the outer Grand Banks of Newfoundland. Mar Ecol Prog Ser 39:1–13

    Article  Google Scholar 

  • Shmida A, Wilson MV (1985) Biological determinants of species diversity. J Biogeogr 12:1–20

    Article  Google Scholar 

  • Smith L (1994) Man-made rock breakwaters as fish habitats: comparisons between breakwaters and natural reefs within an embayment in southeastern Australia. Bull Mar Sci 55:1244

    Google Scholar 

  • Smith SD, Rule MJ, Harrison M, Dalton SJ (2008) Monitoring the sea change: preliminary assessment of the conservation value of nearshore reefs, and existing impacts, in a high-growth, coastal region of subtropical eastern Australia. Mar Pollut Bull 56:525–534

    Article  PubMed  CAS  Google Scholar 

  • Stephens JS Jr, Morris P, Pondella D, Koonce T, Jordan G (1994) Overview of the dynamics of an urban artificial reef fish assemblage at King Harbor, California, USA, 1974–1991: a recruitment driven system. Bull Mar Sci 55:1224–1239

    Google Scholar 

  • Strain E, Morris R, Coleman R, Figueira W, Steinberg P, Johnston E, Bishop M (2017) Increasing microhabitat complexity on seawalls can reduce fish predation on native oysters. Ecol Eng. https://doi.org/10.1016/j.ecoleng.2017.05.030

    Article  Google Scholar 

  • Strain EM, Olabarria C, Mayer-Pinto M, Cumbo V, Morris RL, Bugnot AB, Dafforn KA, Heery E, Firth LB, Brooks PR (2018) Eco-engineering urban infrastructure for marine and coastal biodiversity: which interventions have the greatest ecological benefit? J Appl Ecol 55:426–441

    Article  Google Scholar 

  • Stuart-Smith RD, Bates AE, Lefcheck JS, Duffy JE, Baker SC, Thomson RJ, Stuart-Smith JF, Hill NA, Kininmonth SJ, Airoldi L, Becerro MA, Campbell SJ, Dawson TP, Navarrete SA, Soler GA, Strain EMA, Willis TJ, Edgar GJ (2013) Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501:539–542

    Article  PubMed  CAS  Google Scholar 

  • Taira D, Poquita-Du RC, Toh TC, Toh KB, Ng CSL, Afiq-Rosli L, Chou LM, Song T (2017) Spatial variability of fish communities in a highly urbanised reef system. Urban Ecosyst 21:1–11

    Google Scholar 

  • Tews J, Brose U, Grimm V, Tielbörger K, Wichmann M, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92

    Article  Google Scholar 

  • Thomas C (1990) Fewer species. Nature 347:237

    Article  Google Scholar 

  • Tilman D (2000) Causes, consequences and ethics of biodiversity. Nature 405:208

    Article  PubMed  CAS  Google Scholar 

  • Underwood A (1991) Beyond BACI: experimental designs for detecting human environmental impacts on temporal variations in natural populations. Mar Freshw Res 42:569–587

    Article  Google Scholar 

  • Underwood A (1994) On beyond BACI: sampling designs that might reliably detect environmental disturbances. Ecol Appl 4:3–15

    Article  Google Scholar 

  • Whittaker RH (1960) Vegetation of the Siskiyou mountains, Oregon and California. Ecol Monogr 30:279–338

    Article  Google Scholar 

Download references

Acknowledgements

We thank Sophie Powel, Chris Hellyer, Marty Hing, Natasha Hardy, and Laura Sanchez Peregrín for invaluable assistance in the field. Sophie also contributed a huge amount of fish expertise to this project. The constructive feedback of two anonymous reviewers greatly improved this manuscript and their contribution is appreciated. Finally, thank you to the very professional marine rescue volunteers for the tow. Even the most seasoned experts come across trouble sometimes. This work was partially funded by NSW Environmental Trust Grant 2014/RD/0113. Kelaher BP, Smith S, Figueira W, Coleman M, and Byrne M. Maximising environmental outcomes of coastal infrastructure upgrades. This is contribution number 226 to the Sydney Institute of Marine Science Collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Porter.

Ethics declarations

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: K. D. Clements.

Reviewed by Undisclosed experts.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porter, A.G., Ferrari, R.L., Kelaher, B.P. et al. Marine infrastructure supports abundant, diverse fish assemblages at the expense of beta diversity. Mar Biol 165, 112 (2018). https://doi.org/10.1007/s00227-018-3369-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-018-3369-0

Navigation