Marine Biology

, 165:79 | Cite as

Factors affecting the importance of myctophids in the diet of the world’s seabirds

Review, concept, and synthesis

Abstract

Mesopelagic myctophid fish are a key component of the world’s ocean food webs, linking primary consumers and predators. Among marine predators, seabirds are globally significant consumers, but the extent to which they feed on myctophids has been investigated only at the regional scale. This global-scale review of analyses of the stomach contents of 228 seabird species reveals that the occurrence of myctophids in seabird diets is extremely variable. However, myctophids do constitute a considerable amount of the food of penguins, the Procellariidae (shearwaters/petrels, etc.), and storm-petrels; in locations where birds are foraging in oceanic basin/shelf slope habitat; and among birds that feed at night. Recent analyses of the fatty acid signature of stomach oil emphasize that myctophids can be important prey also for seabirds exploiting oceanic habitats. Current efforts to survey seabirds’ distribution outside the breeding period, when they often become more oceanic, and their circadian activity may further support the global importance of myctophids as a pathway for carbon advection between marine compartments.

Notes

Acknowledgements

The authors thank O. Yamamura for information on the global distribution of myctophids, B. Nishizawa for statistical advice, Drs. Yves Cherel, David Ainley and a anonymous reviewer for valuable and helpful comments.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors. This article is a review paper and does not contain any studies with animals performed by any of the authors.

Supplementary material

227_2018_3334_MOESM1_ESM.pdf (612 kb)
Supplementary material 1 (PDF 612 kb)

References

  1. Ainley DG, Fraser WR, Sullivan CW, Torres JJ, Hopkins TL, Smith WO (1986) Antarctic mesopelagic micronekton: evidence from seabirds that pack ice affects community structure. Science 232:847–849PubMedCrossRefGoogle Scholar
  2. Ainley DG, Fraser WR, Smith WO, Hopkins TL, Torres JJ (1991) The structure of upper level pelagic food webs in the Antarctic: effects of phytoplankton distribution. J Mar Syst 2:111–122CrossRefGoogle Scholar
  3. Ainley DG, Ribic CA, Fraser WR (1992) Does prey preference affect habitat choice in Antarctic seabirds? Mar Ecol Prog Ser 90:207–221CrossRefGoogle Scholar
  4. Anthony JA, Roby DD (1996) Variation in lipid content of forage fishes and its effect on energy provisioning rates to seabird nestlings. In: Forage fishes in marine ecosystems, University of Alaska Sea Grant College Program, report no. 97–01, pp 725–730Google Scholar
  5. Ashmole NP (1971) Seabird ecology and the marine environment. Avian Biol 1:223–286Google Scholar
  6. Barrett RT, Camphuysen K, Anker-Nilssen T, Chardine JW, Furness RW, Garthe S, Huppop O, Leopold MF, Montevecchi WA, Veit RR (2007) Diet studies of seabirds: a review and recommendations. ICES J Mar Sci 64:1675–1691CrossRefGoogle Scholar
  7. Battaglia P, Andaloro F, Consoli P, Esposito V, Malara D, Musolino S, Pedà C, Romeo T (2013) Feeding habits of the Atlantic bluefin tuna, Thunnus thynnus (L. 1758), in the central Mediterranean Sea (Strait of Messina). Helgol Mar Res 67:97–107CrossRefGoogle Scholar
  8. Beamish RJ, Leask KD, Ivanov OA, Balanov AA, Orlov AM, Sinclair B (1999) The ecology, distribution, and abundance of midwater fishes of the Subarctic Pacific gyres. Prog Oceanogr 43:399–442CrossRefGoogle Scholar
  9. Bécares J, García-Tarrasón M, Villero D, Bateman S, Jover L, García-Matarranz V, Sanpera C, Arcos JM (2015) Modelling terrestrial and marine foraging habitats in breeding Audouin’s Gulls Larus audouinii: timing matters. PLoS ONE 10(4):e0120799.  https://doi.org/10.1371/journal.pone.0120799 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bost CA, Georges JY, Guinet C, Cherel Y, Pütz K, Charrassin JB, Handrich Y, Zorn T, Lage J, Le Maho Y (1997) Foraging habitat and food intake of satellite-tracked king penguins during the austral summer at Crozet Archipelago. Mar Ecol Prog Ser 150:21–33CrossRefGoogle Scholar
  11. Bost CA, Zorn T, Le Maho Y, Duhamel G (2002) Feeding of diving predators and diel vertical migration of prey: King penguins’ diet versus trawl sampling at Kerguelen Islands. Mar Ecol Progr Ser 227:51–61CrossRefGoogle Scholar
  12. Bost CA, Thiebot JB, Pinaud D, Cherel Y, Trathan PN (2009) Where do penguins go during the inter-breeding period? Using geolocation to track the winter dispersion of the macaroni penguin. Biol Lett 5:473–476PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bridge ES, Thorup K, Bowlin MS, Chilson PB, Diehl RH, Fleron RW, Hartl P, Kays R, Kelly JF, Robinson WD, Wikelski M (2011) Technology on the move: recent and forthcoming innovations for tracking migratory birds. Bioscience 61:689–698CrossRefGoogle Scholar
  14. Catry P, Phillips RA, Phalan B, Silk JRD, Croxall JP (2004) Foraging strategies of grey-headed albatrosses Thalassarche chrysostoma: integration of movements, activity and feeding events. Mar Ecol Prog Ser 280:261–273CrossRefGoogle Scholar
  15. Catul V, Gauns M, Karuppasamy PK (2011) A review on mesopelagic fishes belonging to family Myctophidae. Rev Fish Biol Fish 21:339–354CrossRefGoogle Scholar
  16. Chaurand T, Weimerskirch H (1994) The regular alternation of short and long foraging trips in the blue petrel Halobaena caerulea: a previously undescribed strategy of food provisioning in a pelagic seabird. J Anim Ecol 63:275–282CrossRefGoogle Scholar
  17. Cherel Y, Ridoux V (1992) Prey species and nutritional value of food fed during summer to King Penguin Aptenodytes patagonicus chicks at Possession Island, Crozet Archipelago. Ibis 134:118–127CrossRefGoogle Scholar
  18. Cherel Y, Verdon C, Ridoux V (1993) Seasonal importance of oceanic myctophids in king penguin diet at Crozet Islands. Polar Biol 13:355–357Google Scholar
  19. Cherel Y, Hobson KA, Guinet C, Vanpe C (2007) Stable isotopes document seasonal changes in trophic niches and winter foraging individual specialization in diving predators from the Southern Ocean. J Anim Ecol 76:826–836PubMedCrossRefGoogle Scholar
  20. Cherel Y, Fontaine C, Richard P, Labat JP (2010) Isotopic niches and trophic levels of myctophid fishes and their predators in the Southern Ocean. Limnol Oceanogr 55:324–332CrossRefGoogle Scholar
  21. Clarke A, Prince PA (1976) The origin of stomach oil in marine birds: analyses of the stomach oil from six species of subantarctic procellariiform seabirds. J Exp Mar Biol Ecol 23:15–30CrossRefGoogle Scholar
  22. Clarke MR, Prince PA (1980) Chemical composition and calorific value of food fed to mollymauk chicks Diomedea melanophris and D. chrysostoma at Bird Island, South Georgia. Ibis 122:488–494CrossRefGoogle Scholar
  23. Cleeland JB, Lea M-A, Hindell MA (2014) Use of the southern ocean by breeding short-tailed shearwaters (Puffinus tenuirostris). J Exp Mar Biol Ecol 450:109–117CrossRefGoogle Scholar
  24. Collins MA, Xavier JC, Johnston NM, North AW, Enderlein P, Tarling GA, Waluda CM, Hawker EJ, Cunningham NJ (2008) Patterns in the distribution of myctophid fish in the northern Scotia Sea ecosystem. Polar Biol 31:837–851CrossRefGoogle Scholar
  25. Connan M, Mayzaud P, Boutoute M, Weimerskirch H, Cherel Y (2005) Lipid composition of stomach oil in a procellariiform seabird Puffinus tenuirostris: implications for food web studies. Mar Ecol Prog Ser 290:277–290CrossRefGoogle Scholar
  26. Connan M, Cherel Y, Mabille G, Mayzaud P (2007a) Trophic relationships of white-chinned petrels from Crozet Islands: combined stomach oil and conventional dietary analyses. Mar Biol 152:95–107CrossRefGoogle Scholar
  27. Connan M, Cherel Y, Mayzaud P (2007b) Lipids from stomach oil of procellariiform seabirds document the importance of myctophid fish in the Southern Ocean. Limnol Oceanogr 52(2007):2445–2455CrossRefGoogle Scholar
  28. Connan M, Mayzaud P, Trouvé C, Barbraud C, Cherel Y (2008) Interannual dietary changes and demographic consequences in breeding blue petrels from Kerguelen Islands. Mar Ecol Prog Ser 373:123–135CrossRefGoogle Scholar
  29. Croxall JP, Lishman GS (1987) The food and feeding ecology of penguins. In: Croxall JP (ed) Seabirds, feeing ecology and role in marine ecosystems. Cambridge University Press, Cambridge, pp 101–133Google Scholar
  30. Croxall JP, McCann TS, Prince PA, Rothery P (1988) Reproductive performance of seabirds and seals at South Georgia and Signy Island, South Orkney Islands, 1976–1987: implications for Southern Ocean monitoring studies. In: Sahrhage D (ed) Antarctic Ocean and resources variability. Springer, Berlin, pp 261–285CrossRefGoogle Scholar
  31. Croxall JP, Prince PA, Reid K (1997) Dietary segregation of krill-eating South Georgian seabirds. J Zool Lond 242:531–556CrossRefGoogle Scholar
  32. Daly KL (1990) Overwintering development, growth, and feeding of larval Euphausia superba in the Antarctic marginal ice zone. Limnol Oceanogr 35:1564–1576.  https://doi.org/10.4319/lo.1990.35.7.1564 CrossRefGoogle Scholar
  33. Davis ND, Myers KW, Ishida Y (1998) Caloric value of high-seas salmon prey organisms and simulated salmon ocean growth and prey consumption. N Pac Anadr Fish Comm Bull 1:146–162Google Scholar
  34. de Brooke ML (2004a) The food consumption of the world’s seabirds. Proc R Soc B 271:S246–S248PubMedCentralCrossRefGoogle Scholar
  35. de Brooke ML (2004b) Albatrosses and petrels across the world. Oxford University Press, Oxford, p 499Google Scholar
  36. Development Core Team R (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  37. Dias MP, Granadeiro JP, Catry P (2012) Working the day or the night shift? Foraging schedules of Cory’s shearwaters vary according to marine habitat. Mar Ecol Prog Ser 467:245–252.  https://doi.org/10.3354/meps09966 CrossRefGoogle Scholar
  38. Donnelly J, Torres JJ, Sutton TT, Simoniello C (2004) Fishes of the eastern Ross Sea, Antarctica. Polar Biol 27:637–650CrossRefGoogle Scholar
  39. Egevang C, Stenhouse IJ, Phillips RA, Petersen A, Fox JW, Silk JR (2010) Tracking of Arctic terns Sterna paradisaea reveals longest animal migration. Proc Natl Acad Sci USA 107:2078–2081PubMedPubMedCentralCrossRefGoogle Scholar
  40. Einoder LD, Page B, Goldsworthy SD, De Little SC, Bradshaw CJA (2010) Exploitation of distant Antarctic waters and close neritic waters by Short-tailed Shearwaters breeding in South Australia. Austral Ecol 36:461–475CrossRefGoogle Scholar
  41. Einoder L, Page B, Goldsworthy SD (2013) Feeding strategy of the short-tailed shearwater vary by year and sea-surface temperature but do not affect breeding success. Condor 115:777–787CrossRefGoogle Scholar
  42. Frederiksen M, Moe B, Daunt F, Phillips RA, Barrett RT, Bogdanova MI, Boulinier T, Chardine JW, Chastel O, Chivers LS, Christensen-Dalsgaard S, Clément-Chastel C, Colhoun K, Freeman R, Gaston AJ, González-Solís J, Goutte A, Grémillet D, Guilford T, Jensen GH, Krasnov Y, Lorentsen SH, Mallory ML, Newell M, Olsen B, Shaw D, Steen H, Strøm H, Systad GH, Thórarinsson TL, Anker-Nilssen T (2012) Multicolony tracking reveals the winter distribution of a pelagic seabird on an ocean basin scale. Divers Distrib 18:530–542CrossRefGoogle Scholar
  43. Gaston AJ, Jones IL (1998) The Auks. Oxford University Press, Oxford, p 340Google Scholar
  44. Gjøsaeter J, Kawaguchi K (1980) A review of the world resources of mesopelagic fish. FAO Fish Tech Paper 193:1–151Google Scholar
  45. Hamer KC, Schreiber EA, Burger J (2002) Breeding biology, life histories, and life history environment interactions in seabirds. In: Schreiber EA, Burger J (eds) Biology of marine birds. CRC Press, Boca Raton, pp 217–261Google Scholar
  46. Harper P (1987) Feeding behaviour and other notes on 20 species of Procellariiformes at sea. Notornis 34:169–192Google Scholar
  47. Harrison CS, Hida TS, Seki MP (1983) Hawaiian seabird feeding ecology. Wildl Monogr 85:1–71Google Scholar
  48. Hayes BP, de Brooke ML (1990) Retinal ganglion cell distribution and behaviour in procellariiform seabirds. Vision Res 30:1277–1289PubMedCrossRefGoogle Scholar
  49. Hedd A, Gales R, Brothers N (2001) Foraging strategies of shy albatross Thalassarche cauta breeding at Albatross Island, Tasmania, Australia. Mar Ecol Prog Ser 224:267–282CrossRefGoogle Scholar
  50. Hill SL, Murphy EJ, Reid K, Trathan PN, Constable AJ (2006) Modelling Southern Ocean ecosystems: krill, the food-web, and the impacts on harvesting. Biol Rev 81:581–608PubMedCrossRefGoogle Scholar
  51. Hilton GM, Furness W, Houston DC (2000) A comparative study of digestion in North Atlantic seabirds. J Avian Biol 31:36–46CrossRefGoogle Scholar
  52. Hopkins T, Sutton TT, Lancraft TM (1996) The trophic and predation impact of a low latitude midwater fish assemblage. Prog Oceanogr 38:205–239CrossRefGoogle Scholar
  53. Hudson JM, Steinberg DK, Sutton TT, Graves JE, Latour RJ (2014) Myctophid feeding ecology and carbon transport along the northern Mid-Atlantic Ridge. Deep-Sea Res Part I 93:104–116CrossRefGoogle Scholar
  54. Hulley PA (1995) Lanternfishes. In: Paxton JR, Eschmeyer WN (eds) Encyclopedia of fishes. Academic Press, San Diego, pp 127–128Google Scholar
  55. Ichii T, Bengston JL, Boveng PL, Takao Y, Jansen JK, Hiruki-Raring LM, Cameron MF, Okamura H, Hayashi T, Naganobu M (2007) Provisioning strategies of Antarctic fur seals and chinstrap penguins produce different responses to distribution of common prey and habitat. Mar Ecol Prog Ser 344:277–297CrossRefGoogle Scholar
  56. Imber M (1976) The origin of petrel stomach oils—a review. Condor 78:366–369CrossRefGoogle Scholar
  57. Irigoien X, Klevjer TA, Røstad A, Martinez U, Boyra G, Acuña JL, Bode A, Echevarria F, Gonzalez-Gordillo JI, Hernandez-Leon S, Agusti S, Aksnes DL, Duarte CM, Kaartvedt S (2014) Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat Commun 5:3271.  https://doi.org/10.1038/ncomms4271 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Iverson SJ, Field C, Bowen WD, Blanchard W (2004) Quantitative fatty acid signature analysis: a new method of estimating predator diet. Ecol Monogr 74:211–235CrossRefGoogle Scholar
  59. Iverson SJ, Springer AM, Kitaysky AS (2007) Seabirds as indicators of food web structure and ecosystem variability: qualitative and quantitative diet analyses using fatty acids. Mar Ecol Prog Ser 352:235–244CrossRefGoogle Scholar
  60. Jackson S, Ryan PG (1986) Differential digestion rates of prey by white-chinned petrels (Procellaria aequinoctialis). Auk 103:617–619Google Scholar
  61. Jacob J (1982) Stomach oils. In: Fraser DS, King JR, Parkes KC (eds) Avian biology, vol VI. Academic Press Inc, Orland, pp 325–340CrossRefGoogle Scholar
  62. Jessopp MJ, Cronin M, Doyle TK, Wilson M, McQuatters-Gollop A, Newton S, Phillips RA (2013) Transatlantic migration by post-breeding puffins: a strategy to exploit a temporarily abundant food resource? Mar Biol 160:2755–2762CrossRefGoogle Scholar
  63. Käkelä R, Käkelä A, Martínez-Abraín A, Sarzo B, Louzao M, Gerique C, Villuendas E, Strandberg U, Furness RW, Oro D (2010) Fatty acid signature analysis confirm foraging resources of globally endangered Mediterranean seabird species: calibration test and application to the wild. Mar Ecol Prog Ser 398:245–258CrossRefGoogle Scholar
  64. Karnovsky NJ, Hobson KA, Iverson SJ (2012) From lavage to lipids: estimating diets of seabirds. Mar Ecol Prog Ser 451:263–284CrossRefGoogle Scholar
  65. Kirkwood R, Robertson G (1997) The foraging ecology of female emperor penguins in winter. Ecol Monogr 67:155–176CrossRefGoogle Scholar
  66. Klevjer TA, Irigoien X, Røstad A, Fraile-Nuez E, Benítez-Barrios VM, Kaartvedt S (2016) Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers. Sci Rep 6:19873.  https://doi.org/10.1038/srep19873 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Klomp NI, Schultz MA (2000) Short-tailed shearwaters breeding in Australia forage in Antarctic waters. Mar Ecol Prog Ser 194:307–310CrossRefGoogle Scholar
  68. Kokubun N, Yamamoto T, Kikuchi DM, Kitaysky A, Takahashi A (2016) Nocturnal foraging by red-legged kittiwakes, a surface feeding seabird that relies on deep water prey during reproduction. PLoS ONE 10:e0138850.  https://doi.org/10.1371/journal.pone.0138850 CrossRefGoogle Scholar
  69. Kooyman GL (1989) Divers divers. Springer, Berlin, p 200CrossRefGoogle Scholar
  70. Kubodera T, Watanabe H, Ichii T (2007) Feeding habits of the blue shark, Prionace glauca, and salmon shark, Lamna ditropis, in the transition region of the Western North Pacific. Rev Fish Biol Fisheries 17:111–124CrossRefGoogle Scholar
  71. Kurasawa K, Itabashi Y, Yamamoto M, Watanuki Y (2012) Prey of streaked shearwaters during long foraging trips estimated by fatty acid composition of the stomach oil. Jpn J Ornithol 61:137–141CrossRefGoogle Scholar
  72. Le Corre M, Jaeger A, Pinet P, Kappes MA, Weimerskirch H, Catry T, Ramos JA, Russell JC, Shah N, Jaquemet S (2012) Tracking seabirds to identify potential marine protected areas in the tropical Indian Ocean. Biol Cons 156:83–93CrossRefGoogle Scholar
  73. Lorrain A, Arguelles J, Alegre A, Bertrand A, Munaron J-M, Richard P, Cherel Y (2011) Sequential isotopic signature along gladius highlights contrasted individual foraging strategies of Jumbo squid (Dosidicus gigas). PLoS ONE 6(7):e22194.  https://doi.org/10.1371/journal.pone.0022194 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lubimova T, Shust K, Popkov V (1987) Specific features in the ecology of Southern Ocean mesopelagic fish of the family Myctophidae. Biological resources of the Arctic and Antarctic (collected papers), vol 320. Nauka Press, Moscow, p 337Google Scholar
  75. Mackley EK, Phillips RA, Silk JRD, Wakefield ED, Afanasyev V, Furness RW (2011) At-sea activity patterns of breeding and non-breeding white-chinned petrels Procellaria aequinoctialis from South Georgia. Mar Biol 158:429–438CrossRefGoogle Scholar
  76. Markaida U, Sosa-Nishizaki O (2010) Food and feeding habits of the blue shark Prionace glauca caught off Ensenada, Baja California, Mexico, with a review on its feeding. J Mar Biol Assoc UK 90:977–994CrossRefGoogle Scholar
  77. Marra PP, Cohen EB, Loss SR, Rutter JE, Tonra CM (2015) A call for full annual cycle research in animal ecology. Biol Lett 11:20150552PubMedPubMedCentralCrossRefGoogle Scholar
  78. Matsumoto K, Oka N, Ochi D, Muto F, Satoh TP, Watanuki Y (2012) Foraging behavior and diet of Streaked Shearwaters (Calonectris leucomelas) rearing chicks at Mikura I. Ornithol Sci 11:9–19CrossRefGoogle Scholar
  79. Moku M, Kawaguchi K, Watanabe H, Ohno A (2000) Feeding habits of three dominant myctophid fishes, Diaphus theta, Stenobrachius leucopsarus and S. mannochir, in the subarctic and transitional waters of the western North Pacific. Mar Ecol Prog Ser 207:129–140CrossRefGoogle Scholar
  80. Moseley C, Grémillet D, Connan M, Ryan PG, Mullers RHE, van der Lingen CD, Miller TW, Coetzee JC, Crawford RJM, Sabarros P, McQuaid CD, Pichegru L (2012) Foraging ecology and ecophysiology of Cape gannets from colonies in contrasting feeding environments. J Exp Mar Biol Ecol 422–423:29–38CrossRefGoogle Scholar
  81. Moteki M, Koubbi P, Pruvost P, Tavernier E, Hulley PA (2011) Spatial distribution of pelagic fish off Adélie and George V Land, East Antarctica in the austral summer 2008. Polar Sci 5:211–224CrossRefGoogle Scholar
  82. Murphy EJ, Watkins JL, Trathan PN, Reid K, Meredith MP, Thorpe SE, Johnston NM, Clarke A, Tarling GA, Collins MA, Forcada J, Shreeve RS, Atkinson A, Korb R, Whitehouse MJ, Ward P, Rodhouse PG, Enderlein P, Hirst AG, Martin AR, Hill SL, Staniland IJ, Pond DW, Briggs DR, Cunningham NJ, Fleming AH (2007) Spatial and temporal operation of the Scotia Sea ecosystem: a review of large-scale links in a krill centred food web. Phil Trans R Soc B 362:113–148PubMedCrossRefGoogle Scholar
  83. Navarro J, Cardador L, Brown R, Phillips RA (2015) Spatial distribution and ecological niches of non-breeding planktivorous petrels. Sci Rep 5:12164PubMedPubMedCentralCrossRefGoogle Scholar
  84. Nelson JB (2005) Pelicans, cormorants and their relatives. Oxford University Press, Oxford, p 661Google Scholar
  85. Neves VC, Bried J, González-Solís J, Roscales JL, Clarke MR (2012) Feeding ecology and movements of the Barolo shearwater Puffinus baroli baroli in the Azores, NE Atlantic. Mar Ecol Prog Ser 452:269–285.  https://doi.org/10.3354/meps09670 CrossRefGoogle Scholar
  86. Ohizumi H, Yoshioka M, Mori K, Miyazaki N (1998) Stomach contents of common dolphins (Delphinus delphis) in the pelagic western North Pacific. Mar Mammal Sci 14:835–844CrossRefGoogle Scholar
  87. Ohizumi H, Kuramochi T, Amano M, Miyazaki N (2000) Prey switching of Dall’s porpoise Phocoenoides dalli with population decline of Japanese pilchard Sardinops melanostictus around Hokkaido, Japan. Mar Ecol Prog Ser 200:265–275CrossRefGoogle Scholar
  88. Orben RA, Irons DB, Paredes R, Roby DD, Phillips RA, Shaffer SA (2015) North or south? Niche separation of endemic red-legged kittiwakes and sympatric black-legged kittiwakes during their non-breeding migrations. J Biogeogr 42:401–412CrossRefGoogle Scholar
  89. Pakhomov EA, Perissinotto R, McQuaid CD (1996) Prey composition and daily rations of myctophid fishes in the Southern Ocean. Mar Ecol Prog Ser 134:1–14CrossRefGoogle Scholar
  90. Paredes R, Orben RA, Suryan RM, Irons DB, Roby DD, Harding AMA, Young RC, Benoit-Bird K, Ladd C, Renner H, Heppell S, Phillips RA, Kitaysky A (2014) Foraging responses of Black-legged Kittiwakes to prolonged food-shortages around colonies on the Bering Sea shelf. PLoS ONE 9(3):e92520.  https://doi.org/10.1371/journal.pone.0092520 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Pepin P (2013) Distribution and feeding of Bethosema glaciale in the western Labrador Sea: Fish-zooplankton interaction and the consequence to calanoid copepod populations. Deep-Sea Res Part I 75:119–134CrossRefGoogle Scholar
  92. Pethybridge H, Daley RK, Nichols PD (2011) Diet of demersal sharks and chimaeras inferred by fatty acid profiles and stomach content analysis. J Exp Mar Biol Ecol 409:290–299CrossRefGoogle Scholar
  93. Pethybridge H, Virtue P, Casper R, Yoshida T, Green CP, Jackson G, Nichols PD (2012) Seasonal variations in diet of arrow squid (Nototodarus gouldi): stomach content and signature fatty acid analysis. J Mar Biol Assoc UK 92:187–196Google Scholar
  94. Phalan B, Phillips RA, Silk JRD, Afanasyev V, Fukuda A, Fox J, Catry P, Higuchi H, Croxall JP (2007) Foraging behaviour of four albatross species by night and day. Mar Ecol Prog Ser 340:271–286CrossRefGoogle Scholar
  95. Phillips RA, Catry P, Silk JRD, Bearhop S, McGill R, Afanasyev V, Strange IJ (2007) Movements, winter distribution and activity patterns of Falkland and brown skuas: insights from loggers and isotopes. Mar Ecol Prog Ser 345:281–291CrossRefGoogle Scholar
  96. Pollet IL, Hedd A, Taylor PD, Montevecchi WA, Shutler D (2014) Migratory movements and wintering areas of Leach’s Storm-Petrels tracked using geolocators. J Field Ornithol 85:321–328CrossRefGoogle Scholar
  97. Prince PA, Morgan RA (1987) Diet and feeding ecology of Procellariiformes. In: Croxall JP (ed) Seabirds, feeing ecology and role in marine ecosystems. Cambridge University Press, Cambridge, pp 135–171Google Scholar
  98. Pusch C, Hulley PA, Kock KH (2004) Community structure and feeding ecology of mesopelagic fishes in the slope waters of King George Island (South Shetland Island, Antarctica). Deep-Sea Res Part 1(51):1685–1708CrossRefGoogle Scholar
  99. Quillfeldt P, Masello JF, Brickle P, Martin-Creuzburg D (2011) Fatty acid signatures of stomach contents reflect inter- and intra-annual changes in diet of a small pelagic seabird, the Thin-billed prion Pachyptila belcheri. Mar Biol 158:1805–1813CrossRefGoogle Scholar
  100. Raclot T, Groscolas R, Cherel Y (1998) Fatty acid evidence for the importance of myctophid fishes in the diet of King Penguins, Aptenodytes patagonicus. Mar Biol 132:523–533CrossRefGoogle Scholar
  101. Ranconi RA, Koopman HN, McKinstry CAE, Wong SNP, Westgate AJ (2010) Inter-annual variability in diet of non-breeding pelagic seabirds Puffinus spp. at migratory staging areas: evidence from stable isotope and fatty acids. Mar Ecol Prog Ser 419:267–282CrossRefGoogle Scholar
  102. Ratcliffe N, Trathan P (2011) A review of the diet and at-sea distribution of penguins breeding within the CAMLR convention area. CCAMLR Sci 18:75–114Google Scholar
  103. Rau GH, Ainley DG, Bengtson JL, Torres JJ, Hopkins TL (1992) 15N/14N and 13C/12C in Weddell Sea birds, seals, and fish: implications for diet and trophic structure. Mar Ecol Prog Ser 84:1–8CrossRefGoogle Scholar
  104. Raya Rey A, Trathan PN, Pütz K, Schiavini A (2007) Effect of oceanographic conditions on the winter movements of rockhopper penguins Eudyptes chrysocome chrysocome from Staten Island, Argentina. Mar Ecol Prog Ser 330:285–295CrossRefGoogle Scholar
  105. Raymond B, Lea M-A, Patterson T, Andrew-Goff V, Sharples R, Charrassin JB, Cottin M, Emmerson L, Gales N, Gales R, Goldsworthy SD, Harcourt R, Kato A, Kirkwood R, Lawton K, Ropert-Coudert Y, Southwell C, van den Hoff J, Wienecke B, Woehler EJ, Wotherspoon S, Hindell MA (2016) Important marine habitat off east Antarctica revealed by two decades of multi-species predator tracking. Ecography 38:121–129CrossRefGoogle Scholar
  106. Renner HM, Mueter F, Drummond BA, Warzybok JA, Sinclair EH (2012) Patterns of change in diets of two piscivorous seabird species during 35 years in the Pribilof Islands. Deep-Sea Res Part II 65–70:273–291CrossRefGoogle Scholar
  107. Ridoux V (1994) The diets and dietary segregation of seabirds at the subantarctic Crozet Islands. Mar Ornithol 22:1–192Google Scholar
  108. Rodhouse PG, Nigmatullin CM (1996) Role as consumers. Phil Trans R Soc B 351:1003–1022CrossRefGoogle Scholar
  109. Rubolini D, Maggini I, Ambrosini R, Imperio S, Paiva VH, Gaibani G, Saino N, Cecere JG (2015) The effect of moonlight on Scopoli’s shearwater Calonectris diomedea colony attendance patterns and nocturnal foraging: a test of the foraging efficiency hypothesis. Ethology 121:284–299CrossRefGoogle Scholar
  110. Sabourenkov EN (1991) Mesopelagic fish of the Southern Ocean—summary results of recent Soviet studies. CCAMLR Sel Sci Papers 1990:433–457Google Scholar
  111. Sassa C, Kawaguchi K (2004) Larval feeding habits of Diaphus garmani and Myctophum asperum (Pisces: Myctophidae) in the transition region of the western North Pacific. Mar Ecol Progr Ser 278:279–290CrossRefGoogle Scholar
  112. Saunders RA, Collins MA, Ward P, Stowasser G, Hill SL, Shreeve R, Tarling GA (2015) Predatory impact of the myctophid fish community on zooplankton in the Scotia Sea (Southern Ocean). Mar Ecol Prog Ser 541:45–64CrossRefGoogle Scholar
  113. Saunders RA, Collins MA, Stowasser G, Tarling GA (2017) Southern Ocean mesopelagic fish communities in the Scotia Sea are substained by mass immigration. Mar Ecol Prog Ser 569:173–185CrossRefGoogle Scholar
  114. Schealer DA (2002) Foraging behavior and food of seabirds. In: Schreiber EA, Burger J (eds) Biology of marine birds. CRC Press, Boca Raton, pp 137–177Google Scholar
  115. Schneider D, Hunt GL Jr (1984) A comparison of seabird diets and foraging distribution around the Pribilof Islands, Alaska. In: DN Nettleship, GA Sanger, PF Springer (eds) Marine birds: their feeding ecology and commercial fisheries relationships. Can Wildl Serv Spec Publ 86–95Google Scholar
  116. Schreer JF, Kovacs KM (1997) Allometry of diving capacity in air-breathing vertebrates. Can J Zool 75:339–358CrossRefGoogle Scholar
  117. Schreiber EA, Burger J (2001) Biology of marine birds, vol Appendix 2. CRC Press, Boca Raton, pp 665–685Google Scholar
  118. Sinclair EH, Vlietstra LS, Johnson DS, Zeppelin TK, Byrd GV, Springer AM, Ream RR, Hunt GL Jr (2008) Patterns in prey use among fur seals and seabirds in the Pribilof Islands. Deep-Sea Res II 55:1897–1918CrossRefGoogle Scholar
  119. Spear LB, Ainley DG, Walker WA (2007) Foraging dynamics of seabirds in the eastern tropical Pacific Ocean. Stud Avian Biol 35:1–99Google Scholar
  120. Storer RW (1987) The possible significance of large eyes in the red-legged kittiwake. Condor 89:192–194CrossRefGoogle Scholar
  121. Thiebot JB, Lescroël A, Pinaud D, Trathan PN, Bost CA (2011) Larger foraging range but similar habitat selection in non-breeding versus breeding sub-Antarctic penguins. Antarct Sci 23:117–126CrossRefGoogle Scholar
  122. Thiebot JB, Delord K, Marteau C, Weimerskirch H (2014) Stage-dependent distribution of the critically endangered Amsterdam albatross in relation to economic exclusive zones. Endang Spec Res 23:263–276CrossRefGoogle Scholar
  123. Thiers L, Delord K, Barbraud C, Phillips RA, Pinaud D, Weimerskirch H (2014) Foraging zones of the two sibling species of giant petrels in the Indian Ocean throughout the annual cycle: implication for their conservation. Mar Ecol Prog Ser 499:233–248CrossRefGoogle Scholar
  124. Tierney M, Nichols PD, Wheatley KE, Hindell MA (2008) Blood fatty acids indicate inter- and intra-annual variation in the diet of Adélie penguins: comparison with stomach content and stable isotope analysis. J Exp Mar Biol Ecol 367:65–74CrossRefGoogle Scholar
  125. Vipin PM, Ravi R, Fernandez TJ, Pradeep K, Boopendranath MR, Remesan MP (2012) Distribution of myctophid resources in the Indian Ocean. Rev Fish Biol Fish 22:423–436.  https://doi.org/10.1007/s11160-011-9244-4 CrossRefGoogle Scholar
  126. Waluda CM, Hill SL, Peat HJ, Trathan PN (2012) Diet variability and reproductive performance of macaroni penguins Eudyptes chrysolophus at Bird Island, South Georgia. Mar Ecol Prog Ser 466:261–274CrossRefGoogle Scholar
  127. Wang SW, Hollmen TE, Iverson SJ (2010) Validating quantitative fatty acid signature analysis to estimate diets of spectacled and Steller’s eiders (Somateria fischeri and Polystica stelleri). J Comp Physiol B 180:125–139PubMedCrossRefGoogle Scholar
  128. Watanabe H, Moku M, Kawaguchi K, Ishimaru K, Ohno A (1999) Diel vertical migration of myctophid fishes (family Myctophidae) in the transitional waters of the western North Pacific. Fish Oceanogr 8:115–127CrossRefGoogle Scholar
  129. Weimerskirch H, Cherel Y (1998) Feeding ecology of short-tailed shearwaters: breeding in Tasmania and foraging in Antarctica? Mar Ecol Prog Ser 167:261–274CrossRefGoogle Scholar
  130. Weimerskirch H, Guionnet T (2002) Comparative activity pattern during foraging of four albatross species. Ibis 144:40–50CrossRefGoogle Scholar
  131. Weimerskirch H, Wilson RP (2000) Oceanic respite for wandering albatrosses. Nature 406:955–956PubMedCrossRefGoogle Scholar
  132. Weimerskirch H, Gault A, Cherel Y (2005) Prey distribution and patchiness: factors in foraging success and efficiency of wandering albatrosses. Ecology 86:2611–2622CrossRefGoogle Scholar
  133. Weimerskirch H, Borsa P, Cruz S, de Grissac S, Gardes L, Lallemand J, Le Corre M, Prudor A (2017) Diversity of migration strategies among great frigatebirds populations. J Avian Biol 48:103–113CrossRefGoogle Scholar
  134. Williams TD (1995) The penguins. Oxford University Press, Oxford, p 295Google Scholar
  135. Williams CT, Buck CL (2010) Using fatty acids as dietary tracers in seabird trophic ecology: theory, application and limitations. J Ornithol 151:531–543CrossRefGoogle Scholar
  136. Wilson RP, La Cock GD, Wilson MP, Mollagee F (1985) Differential digestion of fish and squid in Jackass penguins Spheniscus demersas. Ornis Scand 16:77–79CrossRefGoogle Scholar
  137. Wold A, Jaeger I, Hop H, Gabrielsen GW, Falk-Petersen S (2011) Arctic seabird food chains explored by fatty acid composition and stable isotopes in Kongsfjorden, Svalbard. Polar Biol 34:1147–1155CrossRefGoogle Scholar
  138. Yamamoto T, Takahashi A, Yoda K, Katsumata N, Watanabe S, Sato K, Trathan PN (2008) The lunar cycle affects at-sea behaviour in a pelagic seabird, the Streaked Shearwater, Calonectris leucomelas. Anim Behav 76:1647–1652CrossRefGoogle Scholar
  139. Young JW, Lansdell MJ, Campbell RA, Cooper SP, Juanes F, Guest MA (2010) Feeding ecology and niche segregation in oceanic top predators off eastern Australia. Mar Biol 157:2347–2368CrossRefGoogle Scholar
  140. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GG (2009) Mixed effects models and extensions in ecology with r. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Graduate School of Fisheries SciencesHokkaido UniversityHakodateJapan
  2. 2.National Institute of Polar ResearchTachikawaJapan

Personalised recommendations