Marine Biology

, 165:32 | Cite as

Sex-related differences in the sclerochronology of the reef-building coral Montastraea cavernosa: the effect of the growth strategy

  • Mónica Cecilia Mozqueda-Torres
  • Israel Cruz-Ortega
  • Luis Eduardo Calderon-Aguilera
  • Héctor Reyes-Bonilla
  • Juan P. Carricart-Ganivet
SHORT NOTES

Abstract

To investigate sex-related differences in the skeleton of the reef-building coral Montastraea cavernosa, a gonochoric broadcaster species with an annual cycle of gametogenesis, we collected six colonies during the reproductive season. Sex was determined by histological techniques and sclerochronological characteristics of digital X-ray images. Our results show, as previously reported for other gonochoric corals, differences in the sclerochronological characteristics between female and male colonies. Tissue thickness, density and calcification rate are significantly lower in females than in males, whereas there is no difference in extension rate between sexes. These are the first complete sclerochronological results reported for M. cavernosa, and for gonochoric species with solid skeletons. We conclude that sex differences in this coral arise by coupling energetic costs of reproduction and the growth strategy, and argue that it is important to consider how sclerochronological characteristics vary between sexes of gonochoric species when interpreting climate and environmental proxies from coral skeletons.

Notes

Acknowledgements

M. C. M. T. was supported by a M.Sc. fellowship from the Consejo Nacional de Ciencia y Tecnología (462583), and a mixed scholarship for National mobility (290748). I. C. O. was supported by a PhD fellowship from the Consejo Nacional de Ciencia y Tecnología (351902). This work was founded by grants from the Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica, UNAM (PAPIIT—IN209014) to J. P. C.-G. and the Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE—62143) to L. E. C.-A. We want to thank Jenny Rodríguez for helping with the histological technique, Gabriela Gutiérrez and Sacnité Chávez for their assistance with corals collection, and Paul Blanchon for his valuable comments and for editing the English of the manuscript. The permit to collect the samples was provided by the Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA, Permiso de Pesca de Fomento No. PPF/DGOPA-042/13). This paper is dedicated to the memory of Pedro M. Alcolado, scientist, teacher and friend.

Compliance with ethical standards

Funding

This work was founded by grants from the Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica, UNAM (PAPIIT—IN209014) to Juan P. Carricart-Ganivet and the Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE—62143) to Luis Eduardo Calderon-Aguilera.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

References

  1. Acevedo R, Morelock J, Olivieri RA (1989) Modification of coral reef zonation by terrigenous sediment stress. Palaios 4:92–100.  https://doi.org/10.2307/3514736 CrossRefGoogle Scholar
  2. Acosta A, Zea S (1997) Sexual reproduction of the reef coral Montastraea cavernosa (Scleractinia: Faviidae) in the Santa Marta area, Caribbean coast of Colombia. Mar Biol 128:141–148.  https://doi.org/10.1007/s002270050077 CrossRefGoogle Scholar
  3. Allemand D, Tambutté É, Zoccola D, Tambutté S (2011) Coral calcification, cells to reefs. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Dordrecht, pp 119–150.  https://doi.org/10.1007/978-94-007-0114-4_9 CrossRefGoogle Scholar
  4. Bak RPM, Elgershuizen JHBW (1976) Patterns of oil-sediment rejection in corals. Mar Biol 37:105–113.  https://doi.org/10.1007/BF00389121 CrossRefGoogle Scholar
  5. Bancroft JD, Stevens A (1995) Theory and practice of histological techniques, 4th edn. Churchill-Livingstone, New YorkGoogle Scholar
  6. Barnes DJ, Lough JM (1992) Systematic variations in the depth of skeleton occupied by coral tissue in massive colonies of Porites from the Great Barrier Reef. J Exp Mar Biol Ecol 159:113–128.  https://doi.org/10.1016/0022-0981(92)90261-8 CrossRefGoogle Scholar
  7. Barnes DJ, Lough JM (1993) On the nature and causes of density banding in massive coral skeletons. J Exp Mar Biol Ecol 167:91–108.  https://doi.org/10.1016/0022-0981(93)90186-R CrossRefGoogle Scholar
  8. Barnes DJ, Lough JM (1996) Coral skeletons: storage and recovery of environmental information. Global Change Biol 2:569–582.  https://doi.org/10.1111/j.1365-2486.1996.tb00068.x CrossRefGoogle Scholar
  9. Berger WH, Pätzold J, Wefer G (2002) Times of quiet, times of agitation: Sverdrup’s conjecture and the Bermuda coral record. In: Wefer G, Berger W, Behre KE, Jansen E (eds) Climate development and history of the North Atlantic Realm. Springer-Verlag, Berlin, pp 89–99.  https://doi.org/10.1007/978-3-662-04965-5_7 CrossRefGoogle Scholar
  10. Budd AF, Nunes FLD, Weil E, Pandolfi JM (2012) Polymorphism in a common Atlantic reef coral (Montastraea cavernosa) and its long-term evolutionary implications. Evol Ecol 26:265–290.  https://doi.org/10.1007/s10682-010-9460-8 CrossRefGoogle Scholar
  11. Cabral-Tena RA, Reyes-Bonilla H, Lluch-Cota S, Paz-García DA, Calderón-Aguilera LE, Norzagaray-López O, Balart EF (2013) Different calcification rates in males and females of the coral Porites panamensis in the Gulf of California. Mar Ecol Prog Ser 476:1–8.  https://doi.org/10.3354/meps10269 CrossRefGoogle Scholar
  12. Carricart-Ganivet JP (2004) Sea surface temperature and the growth of the West Atlantic reef-building coral Montastraea annularis. J Exp Mar Biol Ecol 302:249–260.  https://doi.org/10.1016/j.jembe.2003.10.015 CrossRefGoogle Scholar
  13. Carricart-Ganivet JP (2007) Annual density banding in massive coral skeletons: result of growth strategies to inhabit reefs with high microborers’ activity? Mar Biol 153:1–5.  https://doi.org/10.1007/s00227-007-0780-3 CrossRefGoogle Scholar
  14. Carricart-Ganivet JP, Barnes DJ (2007) Densitometry from digitized images of X-radiographs: methodology for measurement of coral skeletal density. J Exp Mar Biol Ecol 344:67–72.  https://doi.org/10.1016/j.jembe.2006.12.018 CrossRefGoogle Scholar
  15. Carricart-Ganivet JP, Merino M (2001) Growth responses of the reef-building coral Montastraea annularis along a gradient of continental influence in the southern Gulf of Mexico. Bull Mar Sci 68:133–146Google Scholar
  16. Carricart-Ganivet JP, Beltrán-Torres AU, Merino M, Ruiz-Zárate MA (2000) Skeletal extension, density and calcification rate of the reef building coral Montastraea annularis (Ellis and Solander) in the Mexican Caribbean. Bull Mar Sci 66:215–224Google Scholar
  17. Carricart-Ganivet JP, Vásquez-Bedoya LF, Cabanillas-Terán N, Blanchon P (2013) Gender-related differences in the apparent timing of skeletal density bands in the reef-building coral Siderastrea siderea. Coral Reefs 32:769–777.  https://doi.org/10.1007/s00338-013-1028-y CrossRefGoogle Scholar
  18. Cohen A, Smith S, McCartney M, van Etten J (2004) How brain corals record climate: an integration of skeletal structure, growth, and chemistry of Diploria labyrinthiformis from Bermuda. Mar Ecol Prog Ser 271:147–158.  https://doi.org/10.3354/meps271147 CrossRefGoogle Scholar
  19. Colombo-Pallotta M, Rodríguez-Román A, Iglesias-Prieto R (2010) Calcification in bleached and unbleached Montastraea faveolata: evaluating the role of oxygen and glycerol. Coral Reefs 29:899–907.  https://doi.org/10.1007/s00338-010-0638-x CrossRefGoogle Scholar
  20. Cruz-Piñón G, Carricart-Ganivet JP, Espinoza-Avalos J (2003) Monthly skeletal extension rates of the hermatypic corals Montastraea annularis and Montastraea faveolata: biological and environmental controls. Mar Biol 143:491–500.  https://doi.org/10.1007/s00227-003-1127-3 CrossRefGoogle Scholar
  21. Dávalos-Dehullu E, Hernández-Arana H, Carricart-Ganivet JP (2008) On the causes of density banding in skeletons of corals of the genus Montastraea. J Exp Mar Biol Ecol 365:142–147.  https://doi.org/10.1016/j.jembe.2008.08.008 CrossRefGoogle Scholar
  22. Dodge RE, Brass GW (1984) Skeletal extension, density and calcification of the reef coral Montastrea annularis: St. Croix, US Virgin Islands. Bull Mar Sci 34:288–307Google Scholar
  23. Fang LS, Chen YWJ, Chen CS (1989) Why does the tip of stony coral grow so fast without zooxanthellae? Mar Biol 103:359–363.  https://doi.org/10.1007/BF00397270 CrossRefGoogle Scholar
  24. Gabb MH, Latchem WE (1967) Manual de soluciones de laboratorio. Bellatierra, MadridGoogle Scholar
  25. Gagan MK, Dunbar GB, Suzukiet A (2012) The effect of skeletal mass accumulation in Porites on coral Sr/Ca and & #x03B4;18O paleothermometry. Paleoceanogr 27:PA1203.  https://doi.org/10.1029/2011pa002215 CrossRefGoogle Scholar
  26. Hall VR, Hughes TP (1996) Reproductive strategies of modular organisms: comparative studies of reef-building corals. Ecology 77:950–963.  https://doi.org/10.2307/2265514 CrossRefGoogle Scholar
  27. Horta-Puga G (2003) Condition of selected reef sites in the Veracruz Reef System (stony corals and algae). Atoll Res Bull 496:360–369.  https://doi.org/10.5479/si.00775630.20.360 CrossRefGoogle Scholar
  28. Horta-Puga G, Carriquiry JD (2008) Growth of the hermatypic coral Montastraea cavernosa in the Veracruz Reef System. Cienc 34:107–112.  https://doi.org/10.7773/cm.v34i1.1251 CrossRefGoogle Scholar
  29. Hubbard J, Pocock Y (1972) Sediment rejection by recent scleractinian corals: a key to palaeoenvironmental reconstruction. Geol Rundsch 61:598–626.  https://doi.org/10.1007/BF01896337 CrossRefGoogle Scholar
  30. Hudson JH (1981) Growth rates in Montastrea annularis: a record of environmental change in Key Largo Coral Reef Marine Sanctuary, Florida. Bull Mar Sci 31:444–459Google Scholar
  31. Knutson DW, Buddemeier RW, Smith SV (1972) Coral chronometers: seasonal growth bands in reef corals. Science 177:270–272.  https://doi.org/10.1126/science.177.4045.270 CrossRefGoogle Scholar
  32. Leuzinger S, Anthony KRN, Willis BL (2003) Reproductive energy investment in corals: scaling with module size. Oecologia 136:524–531.  https://doi.org/10.1007/s00442-003-1305-5 CrossRefGoogle Scholar
  33. Lough JM (2008) Coral calcification from skeletal records revisited. Mar Ecol Prog Ser 373:257–264.  https://doi.org/10.3354/meps07398 CrossRefGoogle Scholar
  34. Lough JM (2010) Climate records from corals. Wiley Interdis Rev Clim Change 1:318–331.  https://doi.org/10.1002/wcc.39 CrossRefGoogle Scholar
  35. Lough JM, Cantin E (2014) Perspectives on massive coral growth rates in a changing ocean. Biol Bull 226:187–202.  https://doi.org/10.1086/BBLv226n3p187 CrossRefGoogle Scholar
  36. Rinkevich B (1996) Do reproduction and regeneration in damaged corals compete for energy allocation? Mar Ecol Prog Ser 143:297–302CrossRefGoogle Scholar
  37. Szmant AM (1986) Reproductive ecology of Caribbean reef corals. Coral Reefs 5:43–54.  https://doi.org/10.1007/BF00302170 CrossRefGoogle Scholar
  38. Szmant AM (1991) Sexual reproduction by the Caribbean reef corals Montastrea annularis and M. cavernosa. Mar Ecol Prog Ser 74:13–25CrossRefGoogle Scholar
  39. Taylor RB, Barnes DJ, Lough JM (1993) Simple models of density band formation in massive corals. J Exp Mar Biol Ecol 167:109–125.  https://doi.org/10.1016/0022-0981(93)90187-S CrossRefGoogle Scholar
  40. Tortolero-Langarica JA, Cupul-Magaña AL, Carricart-Ganivet JP, Mayfield AB, Rodríguez-Troncoso AP (2016) Differences in growth and calcification rates in the reef-building coral Porites lobata: the implications of morphotype and gender on coral growth. Front Mar Sci 3:179.  https://doi.org/10.3389/fmars.2016.00179 CrossRefGoogle Scholar
  41. Weber JN, White EW (1977) Caribbean reef corals Montastrea annularis and Montastrea cavernosa: long-term growth data as determined by skeletal X-radiography. In: Frost SH (ed) Reefs and related carbonates: ecology and sedimentation. American Association of Petroleum Geologists, USA, pp 171–179Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centro de Investigación Científica y de Educación Superior de EnsenadaEnsenadaMexico
  2. 2.Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de MéxicoPuerto MorelosMexico
  3. 3.Posgrado en Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de MéxicoCiudad De MéxicoMexico
  4. 4.Universidad Autónoma de Baja California SurLa PazMexico

Personalised recommendations