Skip to main content

Advertisement

Log in

Variability of size structure and species composition in Caribbean octocoral communities under contrasting environmental conditions

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Octocorals have increased in abundance on a number of Caribbean reefs, but this trend has largely been reported with functional group or genus resolution. A species-level analysis of octocoral communities in St. John, US Virgin Islands was conducted to better understand how this taxon will respond to changing conditions based on their synecology at two sites that are 1.5 km apart and differ in physical conditions. East Cabritte is characterized by moderate wave energy, low sedimentation, and clear water, while contrasting conditions characterize Europa Bay. Surveys conducted in 2014 and 2015 showed that the abundance and size of adult octocorals differed between sites, with taller and denser communities at East Cabritte than Europa Bay (mean height of 32 versus 20 cm; 18 versus 8 colonies m−2). Octocoral diversity and evenness were similar between sites, although multivariate octocoral community structure differed between sites regardless of whether octocorals were resolved to genera or species. Genus-resolution masked differences between sites for speciose genera like Eunicea. The broad overlap in species representation at both sites suggests that diversity is less responsive than community structure to differing environmental conditions, perhaps because the ecological niches of these species are broad. With 35 octocoral species, and diversity and abundances comparable to those studied > 40 years ago on shallow Caribbean reefs, the dense octocoral communities appearing on some present-day reefs reflect expanded benthic occupancy by a well-known (rather than a novel) community type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alcolado PM, García-Parrado P, Hernández-Muñoz D (2008) Estructura y composición de las comunidades de gorgonias de los arrecifes del archipiélago Sabana-Camaguey, Cuba: connectividad y factores determinantes. Bol Invest Mar Cost 37:9–27

    Google Scholar 

  • Alvarez-Filip L, Carricart-Ganivet JP, Horta-Puga G, Iglesias-Prieto R (2013) Shifts in coral-assemblage composition do not ensure persistence of reef functionality. Sci Rep 3:3486

    Article  Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Aust Ecol 26:32–46

    Google Scholar 

  • Bailey RC, Norris RH, Reynoldson TB (2001) Taxonomic resolution of benthic macroinvertebrate communities in bioassessments. J North Am Benthol Soc 20:280–286

    Article  Google Scholar 

  • Bak RPM (1975) Ecological aspects of the distribution of reef corals in the Netherlands Antilles. Bijdrag Dierk 45:181–190

    Google Scholar 

  • Bak RPM (1996) Long-term changes on coral reefs in booming populations of a competitive colonial ascidian. Mar Ecol Prog Ser 133:303–306

    Article  Google Scholar 

  • Bak RPM, Meesters EH (1999) Population structure as a response of coral communities to global change. Am Zool 39:56–65

    Article  Google Scholar 

  • Bak RPM, Nieuwland G, Meesters EH (2005) Coral reef crisis in deep and shallow reefs: 30 years of constancy and change in reefs of Curacao and Bonaire. Coral Reefs 24:475–479

    Article  Google Scholar 

  • Baker AC, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Est Coast Shelf Sci 80:435–471

    Article  Google Scholar 

  • Bayer FM (1961) The shallow-water Octocorallia of the West Indian region. Stud Fauna Curaçao Other Caribb Isl 12:1–373

    Google Scholar 

  • Bellwood DR, Hoey AS, Choat JH (2003) Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs. Ecol Let 6:281–285

    Article  Google Scholar 

  • Birkeland C, Gregory B (1975) Foraging behavior and rates of feeding of the gastropod, Cyphoma gibbosum. Nat Hist Mus Los Angel Cty Sci Bull 20:57–67

    Google Scholar 

  • Cantin NE, Cohen AL, Karnauskas KB, Tarrant AM, McCorkle DC (2010) Ocean warming slows coral growth in the central Red Sea. Science 329:322–2013

    Article  CAS  Google Scholar 

  • Carvalho S, Cúrdia J, Pereira F, Guerra-García JM, Santos MN, Cunha MR (2014) Biodiversity patterns of epifaunal assemblages associated with the gorgonians Eunicella gazella and Leptogorgia lusitanica in response to host, space and time. J Sea Res 85:37–47

    Article  Google Scholar 

  • Castilla JC, Lagos NA, Cerda M (2004) Marine ecosystem engineering by the alien ascidian Pyura praeputialis on a mid-intertidal rocky shore. Mar Ecol Prog Ser 268:119–130

    Article  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Austral J Ecol 18:117

    Article  Google Scholar 

  • Clarke KR, Somerfield PJ, Chapman MG (2006) On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray-Curtis coefficient for denuded assemblages. J Exp Mar Biol Ecol 330:55–80

    Article  Google Scholar 

  • Coleman BD, Mares MA, Willis MR, Hsieh Y (1982) Randomness, area and species richness. Ecology 63:1121–1133

    Article  Google Scholar 

  • Cortés J, Jiménez CE, Fonseca AC, Alvarado JJ (2010) Status and conservation of coral reefs in Costa Rica. Rev Biol Trop 58:33–50

    Article  Google Scholar 

  • Diaz MC, Rützler K (2001) Sponges: an essential component of Caribbean coral reefs. Bull Mar Sci 69:535–546

    Google Scholar 

  • Doty MS (1971) Measurement of water movement in reference to benthic algal growth. Bot Mar 14:32–35

    Article  Google Scholar 

  • Edmunds PJ (2013) Decadal-scale changes in the community structure of coral reefs of St. John. US Virgin Islands. Mar Ecol Prog Ser 489:107–123

    Article  Google Scholar 

  • Edmunds PJ (2015) A quarter-century demographic analysis of the Caribbean coral, Orbicella annularis, and projections of population size over the next century. Limnol Oceanogr 60:840–855

    Article  Google Scholar 

  • Edmunds PJ, Gray SC (2014) The effects of storms, heavy rain, and sedimentation on the shallow coral reefs of St. John, US Virgin Islands. Hydrobiologia 734:143–158

    Article  CAS  Google Scholar 

  • Edmunds PJ, Lasker HR (2016) Cryptic regime shift in benthic community structure on shallow reefs in St. John, US Virgin Islands. Mar Ecol Prog Ser 559:1–12

    Article  Google Scholar 

  • Edmunds PJ, Witman JD (1991) Effect of Hurricane Hugo on the primary framework of a reef along the south shore of St. John, US Virgin Islands. Mar Ecol Prog Ser 78:201–204

    Article  Google Scholar 

  • Edmunds PJ, Tsounis G, Lasker HR (2016) Differential distribution of octocorals and scleractinians aroundSt. John and St. Thomas. US Virgin Islands. Hydrobiologia 767:347–360

    Article  CAS  Google Scholar 

  • Fung T, Seymour RM, Johnson CR (2011) Alternative stable states and phase shifts in coral reefs under anthropogenic stress. Ecology 92:967–982

    Article  Google Scholar 

  • Gardner TA, Côté IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301:958–960

    Article  CAS  Google Scholar 

  • Gattuso JP, Magnan A, Billé R, Cheung WWL, Howes EL, Joos F, Allemand D, Bopp SR, Cooley CM, Eakin M, Hoegh-Guldberg O, Kelly RP, Pörtner HO, Rogers AD, Sumaila UR, Treyer S, Turley C (2015) Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349:4722

    Article  Google Scholar 

  • Gili JM, Coma R (1998) Benthic suspension feeders: their paramount role in littoral marine food webs. Trends Ecol Evol 13:316ebs

    Article  Google Scholar 

  • Goldberg W (1973) The ecology of the coral-octocoral communities off the southeast Florida coast: geomorphology, species composition and zonation. Bull Mar Sci 23:465–488

    Google Scholar 

  • Goldenberg SB, Landsea CW, Mestas-Nuñez AM, Gray WM (2001) The recent increase in Atlantic hurricane activity: causes and implications. Science 293:474–479

    Article  CAS  Google Scholar 

  • Goreau TF (1959) The ecology of Jamaican coral reefs I. Species composition and zonation. Ecology 40:67–90

    Article  Google Scholar 

  • Goreau TF, Wells JW (1967) The shallow-water Scleractinia of Jamaica: revised list of species and their vertical distribution range. Bull Mar Sci 17:442–453

    Google Scholar 

  • Graham NA, Cinner JE, Norström AV, Nyström M (2014) Coral reefs as novel ecosystems: embracing new futures. Curr Opin Environ Sustainab 7:9–14

    Article  Google Scholar 

  • Grange KR, Singleton RJ (1988) Population structure of black coral, Antipathes aperta, in the southern fiords of New Zealand. N Z J Zool 15:481–489

    Article  Google Scholar 

  • Grigg RW (1965) Ecological studies of black coral in Hawaii. Pac Sci 19:244–260

    Google Scholar 

  • Grigg RW (1988) Recruitment limitation of a deep benthic hard-bottom octocoral population in the Hawaiian Islands. Mar Ecol Prog Ser 45:121–126

    Article  Google Scholar 

  • Hay ME (1984) Patterns of fish and urchin grazing on Caribbean coral reefs: are previous results typical? Ecology 65:446–454

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJM, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  Google Scholar 

  • Hughes TP (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265:1547–1551

    Article  CAS  Google Scholar 

  • Hughes TP, Tanner JE (2000) Recruitment failure, life histories, and long-term decline of Caribbean corals. Ecology 81:2250–2263

    Article  Google Scholar 

  • Hughes TP, Rodrigues MJ, Bellwood DR, Ceccarelli D, Hoegh-Guldberg O, McCook L, Moltschaniowksyj N, Pratchett MS, Steneck RS, Willis B (2007) Phase shifts, herbivory, and the resilience of coral reefs to climate change. Cur Biol 17:360–365

    Article  CAS  Google Scholar 

  • Jackson JBC, Donovan MK, Cramer KL, Lam VV (eds) (2014) Status and trends of Caribbean coral reefs: 1970–2012. Global coral reef monitoring network, IUCN, Gland, 304 pp

  • Kinzie RA III (1970) The ecology of Gorgonian (Cnidaria, Octocorallia) of Discovery Bay. Dissertation, Yale University

  • Kinzie RA III (1973) The Zonation of West Indian Gorgonians. Bull Mar Sci 23:93–155

    Google Scholar 

  • Kleypas JA, Buddemeier RW, Gattuso JP (2001) The future of coral reefs in an age of global change. Int J Earth Sci 90:426–437

    Article  CAS  Google Scholar 

  • Kumagai NH (2008) Role of food source and predator avoidance in habitat specialization by an octocoral-associated amphipod. Oecologia 155:739–749

    Article  Google Scholar 

  • Lasker HR (1981) A comparison of the particulate feeding abilities of three species of gorgonian soft coral. Mar Ecol Prog Ser 5:61–67

    Article  Google Scholar 

  • Lasker HR, Coffroth MA (1983) Octocoral distributions at Carrie Bow Cay, Belize. Mar Ecol Prog Ser 13:21–28

    Article  Google Scholar 

  • Lenz EA, Bramanti L, Lasker HR, Edmunds PJ (2015) Long-term variation of octocoral populations in St. John, US Virgin Islands. Coral Reefs 34:1099–1109

    Article  Google Scholar 

  • Lessios HA (1988) Mass mortality of Diadema antillarum in the Caribbean: what have we learned? An Rev Ecol Syst 19:371–393

    Article  Google Scholar 

  • Lewis JB (1960) The coral reefs and coral communities of Barbados, WI. Can J Zoo 38:1133–1145

    Article  Google Scholar 

  • Lewis JB (1997) Abundance, distribution and partial mortality of the massive coral Siderastrea siderea on degrading coral reefs at Barbados, West Indies. Mar Poll Bull 34:622–627

    Article  CAS  Google Scholar 

  • Lewis SL, Maslin MA (2015) Defining the anthropocene. Nature 519:171–180

    Article  CAS  Google Scholar 

  • Loh T, McMurray SE, Henkel TP, Vicente J, Pawlik JR (2015) Indirect effects of overfishing on Caribbean reefs: sponges overgrow reef-building corals. Peer J 3:e901

    Article  Google Scholar 

  • Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, van Woesik R (2001) Coral bleaching: the winners and the losers. Ecol Let 4:122–131

    Article  Google Scholar 

  • Luckhurst BE, Luckhurst K (1978) Analysis of the influence of substrate variables on coral reef fish communities. Mar Biol 49:317–323

    Article  Google Scholar 

  • Lurgi M, López BC, Montoya JM (2012) Novel communities from climate change. Phil Trans R Soc B 367:2913–2922

    Article  Google Scholar 

  • McMurray SE, Finelli CM, Pawlik JR (2015) Population dynamics of giant barrel sponges on Florida coral reefs. J Exp Mar Biol Ecol 473:73–80

    Article  Google Scholar 

  • Miller RJ, Hocevar J, Stone RP, Fedorov DV (2012) Structure-forming corals and sponges and their use as fish habitat in Bering Sea submarine canyons. PLoS ONE 7:e33885

    Article  CAS  Google Scholar 

  • Mittelbach GG, Steiner CF, Scheiner SM, Gross KL, Reynolds HL, Waide RB, Willig MR, Dodson SI, Gough L (2001) What is the observed relationship between species richness and productivity? Ecology 82:2381–2396

    Article  Google Scholar 

  • Mumby PJ (2009) Phase shifts and the stability of macroalgal communities on Caribbean coral reefs. Coral Reefs 28:761–773

    Article  Google Scholar 

  • Oksanen JF, Blanchet G, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2015) Vegan: community ecology Package. R package version 2.3-0. http://CRAN.R-project.org/package=vegan. Accessed 1 May 2017

  • Opresko DM (1973) Abundance and distribution of shallow water gorgonians in the area of Miami, Florida. Bull Mar Sci 23:535–558

    Google Scholar 

  • Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, McArdle D, McClenachan L, Newman MJH, Paredes G, Warner RR, Jackson JB (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–958

    Article  CAS  Google Scholar 

  • Pandolfi JM, Jackson JBC, Baron N, Bradbury RH, Guzman HM, Hughes TP, Bjorndal KA, Cooke RG, McArdle D, McClenachan L, Newman MJH, Paredes G, Warner RR, Sala E (2005) Are U. S. Coral reefs on the slippery slope to slime? Science 307:1725–1726

    Article  CAS  Google Scholar 

  • Pielou E (1966) The measurement of diversity in different types of biological collections. J Theor Biol 13:131–144

    Article  Google Scholar 

  • Privitera-Johnson K, Lenz EA, Edmunds PJ (2015) Density-associated recruitment in octocoral communities in St. John, US Virgin Islands. J Exp Mar Biol Ecol 473:103–109

    Article  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org. Accessed 1 May 2017

  • Reiswig HM (1973) Coral reef project—papers in memory of Dr. Thomas F. Goreau. 8. Population dynamics of three Jamaican Demospongiae. Bull Mar Sci 23:191–226

    Google Scholar 

  • Roff G, Mumby PJ (2012) Global disparity in the resilience of coral reefs. Trends Ecol Evol 27:404–413

    Article  Google Scholar 

  • Rogers CS (1990) Responses of coral reefs and reef organisms to sedimentation. Mar Ecol Prog Ser. Oldendorf 62:85–202

    Article  Google Scholar 

  • Rogers CS, Miller J (2001) Coral bleaching, hurricane damage, and benthic cover on coral reefs in St. John, US Virgin Islands: a comparison of surveys with the chain transect method and videography. Bull Mar Sci 69:459–470

    Google Scholar 

  • Rogers CS, McLain LN, Tobias CR (1991) Effects of Hurricane Hugo (1989) on a coral reef in St. John, USVI. Mar Ecol Prog Ser 78:189–199

    Article  Google Scholar 

  • Rogers CS, Miller J, Muller EM, Edmunds PJ, Nemeth RS, Beets JP, Friedlander AM, Smith TB, Boulon R, Jeffrey CF, Menza C (2008) Ecology of coral reefs in the US Virgin Islands. In: Riegl BM, Dodge RE (eds) Coral Reefs of the USA. Springer, Netherlands, pp 303–373

    Chapter  Google Scholar 

  • Ruzicka RR, Colella MA, Porter JW, Morrison JM, Kidney JA, Brinkhuis V, Lunz KS, Macaulay KA, Bartlett LA, Meyers MK, Colee J (2013) Temporal changes in benthic assemblages on Florida Keys reefs 11 years after the 1997/1998 El Niño. Mar Ecol Prog Ser 489:125–141

    Article  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles of statistics in biological research. W. H. Freeman and Co., New York

    Google Scholar 

  • Smith GW, Ives ID, Nagelkerken IA, Ritchie KB (1996) Aspergillosis associated with Caribbean sea fan mortalities. Nature 382–487

  • Tsounis G, Edmunds PJ (2017) Three decades of coral reef community dynamics in St. John, US Virgin Islands: a contrast of scleractinians and octocorals. Ecosphere 8(1):e01646. https://doi.org/10.1002/ecs2.1646

    Article  Google Scholar 

  • Vermeij MJA, Bak RPM (2002) How are coral populations structured by light? Marine light regimes and the distribution of Madracis. Mar Ecol Prog Ser 233:105–116

    Article  Google Scholar 

  • Williams SM, Chollett I, Roff G, Cortés J, Dryden CS, Mumby PJ (2015a) Hierarchical spatial patterns in Caribbean reef benthic assemblages. J Biogeogr 42:1327–1335

    Article  Google Scholar 

  • Williams SM, Mumby PJ, Chollett I, Cortés J (2015b) Importance of differentiating Orbicella reefs from gorgonian plains for ecological assessments of Caribbean reefs. Mar Ecol Prog Ser 530:93–101

    Article  Google Scholar 

  • Yoshioka PM (1996) Variable recruitment and its effects on the population and community structure of shallow-water gorgonians. Bull Mar Sci 59:433–443

    Google Scholar 

  • Yoshioka P (2009) Sediment transport and the distribution of shallow-water gorgonians. Carib J Sci 45:254–259

    Article  Google Scholar 

  • Yoshioka PM, Yoshioka BB (1987) Variable effects of hurricane David on the shallow water gorgonians of Puerto Rico. Bull Mar Sci 40:132–144

    Google Scholar 

  • Yoshioka PM, Yoshioka BB (1989) Effects of wave energy, topographic relief and sediment transport on the distribution of shallow-water gorgonians of Puerto Rico. Coral Reefs 8:145–152

    Article  Google Scholar 

Download references

Acknowledgements

This research was completed under a permit issued by the VI National Park (VIIS-2011-SCI-0016). Special thanks to W. Goldberg for providing access to the raw data from his studies. We are grateful to E. A. Lenz, A. Ellis and J. Smolenski for analysis of photoquadrats for soft corals, R. Boulon, C. S. Rogers, S. Prosterman, and V. Powell for local support, and the staff of the Virgin Islands Environmental Resource Station for making our visits productive and enjoyable. This is contribution number 262 of the marine biology program of California State University, Northridge.

Funding

This study was funded by the US National Science Foundation (Grant Numbers DEB 08-41441, DEB 13-50146, OCE 13-32915).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Tsounis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Responsible Editor: R. Hill.

Reviewed by R. A. Kinzie and R. Ruzicka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

227_2018_3286_MOESM1_ESM.tif

Online Resource 1: Photograph of the octocoral community at East Cabritte (A) and Europa Bay (B) in 2016. The photograph at East Cabritte shows a view of ~ 2 m width in the foreground, at ~ 8-m depth; the photograph at Europa Bay shows a view of ~ 3 m width in the foreground, at ~ 7-m depth. (TIFF 23295 kb)

227_2018_3286_MOESM2_ESM.eps

Online Resource 2: Species accumulation plot showing mean species richness as a function of sampled area (m2). Curves were produced after Coleman et al. (1982), using the specaccum function in the vegan package of the R statistical software. Vertical bars represent mean ± SD (based on a rarefaction with 100 permutations). (EPS 1819 kb)

Supplementary material 3 (PDF 66 kb)

Supplementary material 4 (PDF 61 kb)

227_2018_3286_MOESM5_ESM.eps

Online Resource 5: Octocoral abundance at 15 sites around St. John and St. Thomas, US Virgin Islands. Bar graphs showing mean densities (± SE, n = 40) of octocorals recorded in the present study (black) and in a recent study (grey) that censused octocorals on a larger spatial scale on St. John and St. Thomas in 2011 (Edmunds et al. 2016). WL = Waterlemon Cay; H = Haulover Bay; EC = East Cabritte; WC = Whistling Cay; MB = Magens Bay; BR = Booby Rock; IB = Inner Brass Bay; BB = Botany Bay; GLB = Great Lameshur Bay; CL = Cocoloba Cay; EB = Europa Bay; FB = Fortuna Bay; CC = Cow and Calves; FC = Flat Cay. (EPS 526 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsounis, G., Edmunds, P.J., Bramanti, L. et al. Variability of size structure and species composition in Caribbean octocoral communities under contrasting environmental conditions. Mar Biol 165, 29 (2018). https://doi.org/10.1007/s00227-018-3286-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-018-3286-2

Navigation